HAPPE: Human and Application Driven
Frequency Scaling for Processor Power
Efficiency

Lei Yang, Robert P. Dick, Gokhan Memik, and Peter Dinda

Abstract—Conventional dynamic voltage and frequency scaling techniques use high CPU utilization as a predictor for user
dissatisfaction, to which they react by increasing CPU frequency. In this paper, we demonstrate that for many interactive applications,
perceived performance is highly-dependent upon the particular user and application, and is not linearly related to CPU utilization. This
observation reveals an opportunity for reducing power consumption. We propose HAPPE (Human and Application driven frequency
scaling for Processor Power Efficiency), an adaptive user-and-application-aware dynamic CPU frequency scaling technique. HAPPE
continuously adapts processor frequency and voltage to the learned performance requirement of the current user and application.
Adaptation to user requirements is quick and requires minimal effort from the user (typically a handful of key strokes). Once the
system has adapted to the user’'s performance requirements, the user is not required to provide continued feedback but is permitted
to provide additional feedback to adjust the control policy to changes in preferences. HAPPE was implemented on a Linux-based
laptop and evaluated in 22 hours of controlled user studies. Compared to the default Linux CPU frequency controller, HAPPE reduces
the measured system-wide power consumption of CPU-intensive interactive applications by 25% on average while maintaining user

satisfaction.

Index Terms—Power, CPU frequency scaling, user-driven study, mobile systems

1 INTRODUCTION

Power efficiency has been a major technology driver for
battery-powered mobile systems, such as mobile phones,
personal digital assistants, MP3 players, and laptops.
Power efficiency has also become a new focus for line-
powered desktop systems and data centers because of
its impact on power dissipation and chip temperature,
which affect performance, reliability, and lifetime.
Processor power consumption is often a substantial
portion of system power consumption in mobile sys-
tems [1]. Our measurements indicate that reducing the
processor power consumption can save up to 40% of
the overall system power consumption on a modern
laptop (please refer to Section 5.6). Dynamic frequency
and voltage scaling (DVEFS) is one of the most commonly
used power reduction techniques for processors. DVFS
changes the frequency and voltage of a processor at run-
time to trade off power consumption and performance.
Most existing DVFS techniques, such as those used in the
Linux [2] and Windows [3] operating systems, determine
the appropriate processor frequency based on current

o L. Yang is with Google, Mountain View, CA. She completed much of this
work while with Northwestern University, Evanston, IL.
E-mail: leiyang@google.com

e R. P. Dick is with the Electrical Engineering and Computer Science
Department, University of Michigan, Ann Arbor, MI.
E-mail: see http://robertdick.org/

o G. Memik and P. Dinda are with Electrical Engineering and Computer
Science Department, Northwestern University, Evanston, IL.
E-mail: memik@eecs.northwestern.edu and see http://pdinda.org/

CPU utilization. These approaches use CPU utilization as
a measure of required performance. Therefore, to main-
tain adequate performance, they only allow a decrease
in frequency when CPU utilization is below a certain
threshold, e.g., 80%.

In the process of designing CPU power management
techniques, it is possible to lose sight of an important
fact: the ultimate goal of any computer system is to
satisfy its users, not to execute a particular number of
instructions per second. Although CPU utilization is a
good indication of processor performance, the actual
perceivable system performance depends on individual
users and applications. Moreover, user satisfaction is
not linearly related to CPU utilization. We conducted
a study on 10 users with four interactive applications
and found that for some applications, some users are
satisfied with system performance when the processor
is at the lowest frequency, while other users may not be
satisfied even when it operates at the highest frequency.
We also found that users may be insensitive to varying
processor frequency for one application, but may be very
sensitive to such changes for another application. Tradi-
tional DVFS policies that consider only CPU utilization
or other user-oblivious performance metrics are often
too pessimistic about user performance requirements,
and use a high frequency in order to satisfy all users,
resulting in wasted power. Similar findings were also
reported in other studies [4], [5].

In this paper, we propose HAPPE (Human and Ap-
plication driven frequency scaling for Processor Power
Efficiency), a CPU DVFS technique that adapts voltage

and frequency to the performance requirement of the
current user and application. HAPPE associates individ-
ual users and applications at different CPU utilization
levels with the lowest frequency that satisfies the user.
HAPPE determines user satisfaction by taking direct
input. However, it does not require continuous explicit
user feedback, and only needs a short training period the
first time a user runs an application. For each user and
application, HAPPE saves the required CPU frequency at
different utilization levels, and automatically loads this
information upon later invocations of the application.
After the training period, the user is not required to
provide additional feedback, but may occasionally send
new inputs to change the control policy, if desired.

We implemented HAPPE as a user-space CPU fre-
quency governor for Linux and compared it to the Linux
default ondemand frequency governor [2]. To find out
whether HAPPE can save more power while still satis-
fying users, we conducted a study on 24 users with four
representative CPU-intensive interactive applications for
mobile systems such as smart phones and laptops. Com-
pared to the ondemand governor, HAPPE reduced the
overall system power consumption by an average of 25%
without degrading user satisfaction. This reduction is
significant, considering that the highest possible system-
wide power reduction by constantly scaling frequency
from the highest level to the lowest level is 40.63%, when
the CPU utilization is above 80% (the average for our
testing applications).

The rest of this paper is organized as follows. Sec-
tion 2 introduces related work. Section 3 describes our
study of user-perceived performance and its relationship
with CPU utilization. Section 4 presents the user and
application driven frequency control algorithm used in
HAPPE. Section 5 presents our experimental setup for
the user studies and power measurements, and shows
the comparison results for HAPPE and the Linux onde-
mand frequency governor. Finally, Section 6 concludes
the paper.

2 RELATED WORK

Dynamic voltage and frequency scaling (DVES) is a
commonly-used power reduction technique for proces-
sors. Traditional DVFS policies use CPU utilization as
the metric to determine when to change frequency [2],
[3]. Sasaki et al. [6] used other hardware performance
information available to the operating system to make
frequency change decisions. Their DVFS algorithm is
based on statistical analysis of performance counters.
However, their technique needs compiler support to
insert code for performance prediction.

Choi, Soma, and Pedram [7] changed CPU frequency
based on workload decomposition, which tends to pro-
vide power improvements only for memory-bound ap-
plications. Wu et al. [8] designed a framework for a
run-time DVFS optimizer in a general dynamic com-
pilation system. Xu, Mossé, and Melhem [9] describe a

DVES scheme that captures the variability of workloads
using the probability distribution of the computational
requirement of each task in the system. To the best of
our knowledge, none of these techniques directly used
user satisfaction to inform the power management state
controller.

Researchers have also described techniques that take
user perception into account in DVFS and other related
areas. There are in general three types of approaches.

Explicitly obtaining user input, e.g., by monitoring mouse
movement or keyboard events. Lorch and Smith [10] found
that different types of user interface events such as
mouse movements, mouse clicks, and keystrokes trig-
ger tasks with significantly different CPU requirements,
suggesting that DVFS algorithms should adjust speeds
based on interface events.

Lin et al. [11] describe a DVFS scheme that controls
processor frequency by monitoring explicit user input
via keyboard events. This technique uses a simple con-
trol policy that assigns a time interval for the processor
to stay at each frequency level. When the user presses
the discomfort key, the frequency is increased and the
time interval for the previous frequency level is adjusted
accordingly. This simple control policy is completely
user-driven and does not make use of any CPU perfor-
mance information. It does not learn user preferences for
particular applications, and requires ongoing (although
gradually slowing) explicit feedback from users to main-
tain adequate performance, which may eventually annoy
users.

Implicitly estimating user perception by measuring metrics
such as the response times in interactive applications or rate
of change of video output as a proxy for the user. Although
such approaches use models for user perceivable perfor-
mance, they cannot distinguish among the requirements
of different users, thereby neglecting potential power
savings.

Flautner and Mudge [12] proposed Vertigo, which
adjusts CPU frequency to different workload charac-
teristics. It monitors application messages to measure
user-perceived latency and proposes a layered frequency
scaling scheme based on the user-perceived latency.
Endo et al. [13] used latency as a performance metric
and for detecting performance anomalies in operating
systems. Gupta, Lin, and Dinda [4] demonstrated a
high variation in user tolerance for restrictions in the
availability of CPU, memory, and disk resources. Mallik
et al. [14] demonstrated that this variation holds for
power management as well.

Yan, Zhong, and Jha [15] defined the delay between
user input and computer response as a measure of user-
perceived latency, and used it to control CPU voltage
scaling. Mallik et al. [16] describe PICSEL, a frame-
work that uses measurements of variations in the rate
of change of video output to estimate user-perceived
performance, and adapts CPU frequency accordingly.
However, these techniques ignore the variation among
users and applications.

Shye et al. [5] proposed a DVFS scheme that uses
a neural network model to predict user satisfaction
based on hardware performance counter readings. This
technique requires an off-line training stage for each user
and application, which runs the application at different
frequency level and asks the user for a verbal satisfaction
rating. The user cannot do productive work during
the training phase. If the operating conditions or user
preferences change, the training must be repeated.

Implicitly inferring user satisfaction by monitoring the sta-
tus of biometric sensors on the user. This approach requires
specially designed biometric sensors to be attached to
users. It remains to be seen how easily these sensors can
be integrated into computer systems and normal work-
flows. As such technologies become practical, HAPPE
could use them instead of explicit user input.

Shye et al. [17] proposed the addition of new biometric
input devices for gathering information about user phys-
iological traits. They considered three biometric devices:
eye tracker, galvanic skin response (GSR) sensor, and
force sensors. The studies show that there are significant
changes in human physiological traits as performance
decreases and these changes correlate strongly to the sat-
isfaction levels reported by the users. Based upon these
observations, they constructed a DVFS scheme called
Physiological Traits-based Power-management (PTP).

3 USER-PERCEIVED PERFORMANCE

CPU utilization has been widely used as a proxy for
required performance. In traditional CPU DVES policies,
it is used as the metric to determine CPU frequency.
To guarantee high processor performance, these policies
only decrease frequency when CPU utilization is below
a certain threshold, e.g., 80%. However, processor per-
formance is not identical to user-perceived performance.

Do different users have the same performance require-
ment for the same application? Does one user have
the same performance requirement for different appli-
cations? To find out, we conducted a 10-hour user study
with 10 users! on a Lenovo Thinkpad Té1 laptop, which
has a Intel Core 2 Duo processor, 2GB memory, and
runs OpenSuse 10.3 and version 2.6.22 of the Linux ker-
nel. Linux supports five frequencies for this processor:
0.8GHz, 1.2GHz, 1.6GHz, 2.2GHz, and 2.3 GHz?, and
scales voltage automatically with frequency.

We used four Linux CPU-intensive interactive games
as our testing applications: Torcs, a 3D car racing game;
Quake3, a 3D shooting game; Glest, a 3D real-time
strategy game; and Trackballs, a 3D ball maze game. We
selected these testing applications as representatives of
typical CPU-intensive interactive applications on high-
end mobile systems. Section 5 gives additional detail

1. The scale of this first user study was kept small because each
evaluation took an hour. We conducted a larger scale second study
with 24 users to evaluate HAPPE, which is presented in Section 5.

2. The Linux acpi-cpufreq driver identifies the highest frequency as
2,201 MHz. However, we found the actual frequency is 2,300 MHz
using a timing analysis program that operates within cache.

on our reasons for, and implications of, selecting these
applications.

In the user study, each user played these games at all
five frequency levels. The user studies were double-blind
and the order of frequencies was randomized to elim-
inate any possible “first-time execution” impact. Each
application was run for at least 2 minutes, and users
were permitted to play as long as they desired to evalu-
ate the responsiveness/performance of the system. After
each play period, users were prompted to enter their
“satisfaction level with the system responsiveness/performance
on a scale of 1 to 5, where 5 is the most satisfied and 1 is
the least satisfied.” While users were playing the game,
a program ran in the background to sample utilization
level for both CPUs on the laptop. Because our test
platform has two CPUs, in all user studies the testing
application being evaluated was scheduled to run on
CPUO using the Linux taskset utility.

Figure 1 illustrates (1) the satisfaction ratings of 10
users at five frequency levels, where level 1 represents
the lowest frequency (0.8 GHz) and level 5 represents
the highest frequency (2.3GHz), and (2) the average
utilization of CPUOQ (the CPU that is actually running the
task), obtained by sampling the CPU utilization every
second during the user study for each user. As shown
in Figure 1, all four applications are CPU-intensive. In
general, CPU utilization decreases as frequency increases
and user satisfaction appears to be a monotonic function
of frequency. However, this function is non-linear, and
differs greatly among users and applications. There are
only a few cases in which user satisfaction decreases
when frequency increases. In the 150 test cases (10 users,
3 applications, and 5 frequency levels) presented in
Figure 1, there are 12 cases (8%) in which the user rating
decreases by one level when frequency is increased by
one level, and 4 cases (2.7%) in which the user rating
decreases by two levels when frequency is increased by
one level. We believe that the most likely explanation
for these rare cases is reporting noise. Fortunately, they
have limited practical impact on the technique due to
their rarity.

These results provide evidence that conventional
DVFEFS policies that only use CPU utilization as the con-
trol metric, ignoring variation among users and applica-
tions, are likely to either annoy users or waste power.

4 THE HAPPE APPROACH

The objective of HAPPE is to minimize power consump-
tion without degrading user-perceived performance. For
user-interactive systems, the optimal frequency for the
current application at the current CPU utilization level
is the lowest frequency necessary to satisfy the current
user. To approximate the optimal frequency, HAPPE
learns user preferences and obtains user feedback by
monitoring special performance and power keys, which
can be mapped to any two keys or key combinations on
a regular keyboard. Users may press the performance

User 1 User 2 User 6 User 7 User 10
T T T T T T T T
B
N

o AN
£
s
§ a torcs ——
= quaked --x--

2% glest -

1 I trackballs o
X = =
$ 10w 5 5ok
2 % =
= 80| x w0
N .
g 60f * * *
2 40) torcs —+—
% e quaked --x--
g 20r glest -
g trackballs o
zZ 0 P . L PR . L PR L . PR L . PR P .

1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Freq. level Freq. level Freq. level Freq. level Freq. level Freq. level Freq. level Freq. level Freq. level Freq. level

Fig. 1. Satisfaction rating and CPU utilization of 10 users at 5 different frequency levels. Level 1 is the lowest frequency

and level 5 is the highest frequency.

Algorithm 1 HAPPE frequency controller (left) and w_map function (right)

for each sample period P; do

fnezt = fcur

if performance key pressed then
fne$t:fcur+1 o
w_map(user, app, frext, util)

else if power key pressed then
fnea:t = fcur -1 o
w_map(user, app, fnezt, util)

else -
frext = r_map(user, app, util)

end if

if fnea:t 7é fcur then
Set_freq(fnext)

end if

end for

Input: user, app, j@mt, util

mapluser][app][util] = frezt
for all u > wutil do
if mapluser|[app][u] < fnest then
mapluser][app][u] = frext
end if
end for
for all u < util do
if mapluser|[app][u] > frest then
mapluser][app|[u] = frext
end if
end for

key when the responsiveness/performance of the system
does not satisfy them. They may press the power key
when they are satisfied with performance and want to
save power.

4.1 User Application Frequency Profile

For each user, HAPPE creates a user application frequency
profile for every interactive application the user executes.
When a different user logs into the computer, HAPPE
loads the appropriate profile, i.e., the appropriate power
management settings for a user—application combination
only start from a blank slate the first time that particular
user runs the application. It is important to note that the
frequency profile must distinguish between applications
as well as users. Consider the example of user 6 in Fig-
ure 1. If the frequency profile for Quake3 (for which the
lowest frequency satisfies the user) were to be used for
Torcs or Trackballs, the user would be very dissatisfied.

We indicate the highest CPU frequency with f,,;, the
current frequency with f,,, and the current CPU utiliza-
tion with util. The normalized CPU utilization is defined
as follows: util = wutil - f/fmaz- The user application
frequency profile divides the normalized CPU utilization

into ten discrete levels (e.g., 0%-10%) and maps a user-
satisfactory frequency to each level. The frequencies at
all normalized utilization levels are initialized to the
lowest frequency. Then, every sample period (P), e.g.,
one second, HAPPE refreshes the frequency for the next
sample period (fnes:), and updates the corresponding
frequency profile if necessary.

Algorithm 1 describes the technique HAPPE uses to
control processor frequency. HAPPE determines f¢,: by
checking user feedback in the last sample period and
looking up the corresponding frequency profile entry
(the r_map function) based on normalized CPU utiliza-
tion (util), current user (user), and current application
of focus (app). If neither the performance or power
key was pressed in the last sample period, HAPPE
uses the frequency profile to determine the frequency
that previously satisfied the user at the current nor-
malized utilization level, and adjusts the CPU voltage
and frequency appropriately. If HAPPE detects that the
performance key was pressed in the last sample period,
it increases CPU frequency by one level. Otherwise,
if HAPPE detects that the power key was pressed in
the last sample period, it decreases CPU frequency by

one level. Then, HAPPE updates the corresponding fre-
quency profile entry using the w_map function presented
in Algorithm 1. Based on the data presented in Section 3,
we assume that for the same user and application,
lower CPU utilization levels require equal or lower CPU
frequencies. Therefore, HAPPE not only updates the
current normalized utilization level, but also checks to
make sure that all utilization levels that are higher than
the current level have at least the same frequency, and
that all utilization levels that are lower than the current
level have at most the same frequency.

The computational overhead of HAPPE is decided by
the sample period P in Algorithm 1. This is because
HAPPE re-evaluates user satisfaction based on the feed-
back input in the last sample period and adapts CPU
frequency accordingly in every sample period. In our
experiments, P is set to 1 second. In practice, using 1 sec-
ond as sample period is sufficient to reduce power while
maintaining user satisfaction, and results in negligi-
ble performance overhead. To estimate the performance
overhead of HAPPE, we measured the CPU utilization
of the experimental platform with the processor at the
lowest frequency and without any applications running,
establishing that the baseline CPU utilization was 0%.
Then with all else being equal, we measured the CPU
utilization when HAPPE was running, which was on
average 1% and did not exceed 2%.

4.2 Training Phase

When a user first runs an application, HAPPE starts
with a blank state and goes through a training period
to build the user application frequency profile. Unlike
previous work that requires continuous explicit user
feedback [11], the training period in HAPPE is short,
implicit, and not separated from normal application use:
users may actively use the application during training
and need not restart the application when training is
finished. During the training period, the user needs
to use only a few keystrokes to find the satisfactory
frequency level. Then, for each user and application,
HAPPE learns the required CPU frequencies at differ-
ent utilization levels using the frequency profile, and
automatically loads the profile upon later invocation of
the application. After the training period, the user is not
required to provide additional input, but is permitted
to do so if desired. For example, the user’s performance
requirements may change each time the same application
is invoked, or during different phases of the application.
In cases like this, HAPPE starts with the user application
frequency profile created previously, and quickly adapts
to the new requirements based on user inputs.

4.3

We implemented HAPPE as a user-space CPU frequency
governor for Linux. The governor program uses Pthreads
to create two threads: 77 and T5. The first thread (1%)
polls CPU utilization every second, checks for user input

Implementation and Discussions

signals from the second thread (7%), and scales frequency
and updates the user application frequency profile when
necessary. 1> monitors keyboard events, and sends a
signal to T; when the performance key or power key is
pressed. There are a few additional details that proved
important when implementing HAPPE.

o Some users may send a burst of key presses when
they are unsatisfied with performance, without
waiting to observe performance improvement. This
would result in moving to the highest frequency,
which may not be necessary to satisfy the user. To
prevent this, we treat all series of key presses within
intervals smaller than one second as a single key
press.

o For multiprocessor systems, HAPPE manages each
CPU individually if its frequency can be changed in-
dependently. If the processors must share the same
frequency due to hardware limitations, HAPPE
manages the frequency of the group based on the
highest utilization within it.

o If the user is concurrently running several multitask-
ing applications, HAPPE monitors the current inter-
active application of focus, e.g., the current active
X-window application, and updates its frequency
profile. HAPPE maintains a CPU frequency that
satisfies the user running the current interactive ap-
plication. If the active application is the most CPU-
intensive process, HAPPE works well as described
in Algorithm 1. However, it is possible that the
current application of focus is not CPU-intensive,
while another background process (or processes) is
consuming most of the CPU cycles. For example, the
user may be browsing a web site while the system
is busy installing updates in the background. In this
case, HAPPE still follows Algorithm 1 and tries to
decrease frequency, which would most likely not
hurt the responsiveness of the application of focus
and thereby not cause user dissatisfaction. However,
since CPU frequency is decreased, the performance
of the other CPU-intensive process will be degraded.
A user that indeed cares about the performance of
that process, would likely soon switch back to it and
send improvement request to HAPPE by pressing
the performance key. In this case, HAPPE would
eventually adjust the CPU frequency to a desirable
level. In the rare event where the user does not
switch back to the other process, the key press
events would be sent to the process of focus, which
would also increase the frequency.

o For portable systems such as laptops and smart
phones, it is unlikely that multiple users will run
CPU-intensive applications on the system simulta-
neously. However, if this occurs, HAPPE follows
the same policy and creates a frequency profile
for each user and application combination. At any
given time, HAPPE will use the highest frequency
necessary to satisfy all current users.

5 EVALUATION RESULTS

To evaluate HAPPE, we conducted a 12-hour, 24-
participant user study. Each participant used multiple
interactive and CPU-intensive applications in a variety
of power management environments. Constraints on the
amount of time each study participant can realistically
volunteer made it necessary to limit the total number of
applications with which HAPPE was tested. We there-
fore selected applications for which it was most difficult
to draw conclusions in the absence of empirical evidence.
The analysis used during application selection follows.

Applications run on mobile computers can be broken
into categories based on whether they are CPU-intensive
and whether they are interactive. For applications that
are interactive but not CPU-intensive (e.g., text and im-
age editing applications such as OpenOffice and GIMP),
we experimentally determined that conventional DVFS
schemes such as the Linux ondemand governor detect
low CPU utilization and change DVFS state to the same
level as HAPPE. For applications that are non-interactive
but CPU-intensive (e.g., compilers or file compression
software), user feedback on performance is generally
deferred until application termination, increasing the
complexity of directly using feedback-based learning of
user preferences. In summary, for applications that have
low CPU utilization and/or are non-interactive, HAPPE
does as well as conventional DVFS control techniques,
but does not do better. However, for applications that are
both CPU-intensive and interactive, it might be possible
to learn user preferences and use this information to
reduce power consumption below that of conventional
CPU utilization based power management techniques.
Our user study therefore focused on answering the
following questions for CPU-intensive, interactive appli-
cations.

o Can HAPPE reduce power consumption more than
the Linux ondemand governor by using the varia-
tion among users and applications?

o How close are power consumption improvements
brought by HAPPE to the best possible via any
DVES policy?

o Can HAPPE provide similar level of user satisfac-
tion to the Linux ondemand governor?

o How does providing users feedback on the power
consumption implications of their decisions influ-
ence power consumption and user satisfaction?

5.1 Setup for Power Measurements

All our experiments were performed on the Lenovo
Thinkpad T61 laptop described in Section 3. The volt-
ages/frequencies of the two cores in this laptop are
scaled together due to hardware constraints. We con-
nected the T61’s DC power supply in series with a
100m£) Ohmite Lo-Mite 15FR025 molded silicone wire
element current sensing resistor. Then we measured
the voltage across the resistor to obtain the current of
the laptop, using a National Instruments 6034E data

Workstation measures laptop
power consumption using high
resolution data acquisition card

Laptop ruT user study

Fig. 2. Setup for power measurements.

acquisition board attached to the PCI bus of a host
workstation running Linux. This allows us to measure
the power consumption of the entire system (including
other power consuming components such as memory,
graphic card, LCD display, and hard disk). Our power
measurement setup is illustrated in Figure 2. During all
experiments, the back-light of the LCD display is set to
maximum brightness. Our technique focuses on reduc-
ing CPU power consumption, because it is a major com-
ponent in system-wide power consumption. However,
our objective is to improve the battery life for portable
systems, which is determined by the system-wide power
consumption, not the CPU power consumption alone.
Therefore, we measured the power consumption of the
entire portable system. Note that reducing processor
frequency can also reduce the demands on other devices,
and therefore their power consumptions.

5.2 Power Key Feedback

When the performance key is pressed, the user receives
almost immediate positive feedback via change in per-
formance. However, when the power key is pressed, the
user does not normally receive feedback on the benefits
for a long time: the positive effect is increased battery
life. In real-world scenarios, users have an incentive to
save power when their laptops or other portable devices
are running on battery power, but the benefits come later
(many hours before the impact on battery life is known)
than practical to observe in a user study (2 minutes
for each evaluation). Rahmati, Qian, and Zhong found
that making battery life information visible to end users
has a strong impact on power management for mobile
devices [18].

In our user studies, we displayed a bar graph indicat-
ing battery life in the bottom-left corner of the screen to
provide feedback on the effects of power consumption.
We control the indicator with a simulated battery that
is designed to last for two hours® when the processor

3. We used two hours to approximate the real-world scenario. Exper-
iments with shorter battery life period such as a few minutes showed
that users would panic when they saw the timer is reaching zero and
would press the keys randomly.

female (33.3%)

male (66.7%)

(a) Sex.

master (62.5%) beginner (12.5%)

moderate (25.0%)

(c) Experience with computer.

Fig. 3. Demographics of users.

is at the lowest frequency and 70 minutes when the
processor is at the highest frequency. The indicator dis-
plays the remaining operating time based on current
battery energy and power consumption, obtained from
an on-line power model based on the measured power
consumption in Table 2.

Note that HAPPE does not require the use of the bat-
tery life indicator. In our evaluation, we tested HAPPE
both with and without using the battery life indicator to
determine how providing feedback on power consump-
tion to users changes their power management decisions.

5.3 Setup for User Study

The 24 user study participants are graduate and under-
graduate university students; they span a wide range of
professional backgrounds, races, ages, and computer and
gaming experience levels. Figure 3 illustrates study par-
ticipant demographics, which may be of use to the reader
in judging whether the diversity in subject background
and experience is sufficient for our experimental results
to generalize to other populations of interest. Each user
evaluation lasted about 40 minutes. Prior to each eval-
uation, users were asked to fill out questionnaires to
rate their level of experience with computers and com-
puter games using one of the following levels: beginner,
moderate, and master. Then they read handouts with
the instructions for the experiment. The users were also
shown how the games are played, and were permitted
to practice until they were able to play on their own.

Chemistry (8.7%)

Physics (8.7%)
BME (4.3%)
History (4.3%)

Neuroscience (4.3%)
Music (4.3%)

EECS (65.2%)

(b) Background.

moderate (33.3%)

master (33.3%)

beginner (33.3%)

(d) Experience with video games.

In the user study, each user plays each of the four
games four times, denoted as ondemand, T-HAPPE, O-
HAPPE, and B-HAPPE. Each time, the game is played for
two minutes and then exits automatically. Afterwards,
the users are prompted to enter their “satisfaction level
with the computer performance/responsiveness on a scale of 1
to 5, where 5 is the most satisfied and 1 is the least satisfied” .
Although some users may consistently be biased toward
reporting higher or lower levels of satisfaction, this rat-
ing system allows us to detect changes in the satisfaction
of a particular user when experiencing different levels of
application performance during the study.

During the first run, users play the game normally.
CPU frequency is controlled by the Linux ondemand
frequency controller, with the sample_rate set to 80ms
and the up_threshold set to 80%. During next three runs,
HAPPE is used to control CPU frequency. Users may
press a green-colored key to require higher performance
or better responsiveness, or press a yellow-colored key
to save power when they are satisfied with the current
performance; in our experiments, colored labels were
attached to otherwise-unused keys near the space bar.
Note that users are not required to press either key. The
three phases differ as follows.

o T-HAPPE is the training phase. During this phase,
the frequencies at all utilization levels are initialized
to the lowest level and adjusted when the two
control keys are pressed. This phase is separated
deliberately from the following phase to determine
whether more frequent feedback during this phase

CPU utilization and frequency (Torcs)

T T

100

80

60 :
Perf. key

40

CPU utilization %

N
Perf. key

CPU frequency (GHz)

Perf. key ;

P 2 {12

Power key CPUO utilization
CPU1 utilization 0.8
\ , Frequency !

AoA o A i

40 60 80 100 120
Time (sec)

Fig. 4. Example of HAPPE training phase.

annoys users, although there would be no separa-
tion of these phases in practical (non-study) use.

o During O-HAPPE, HAPPE loads the user applica-
tion frequency profile created during T-HAPPE and
controls frequency accordingly. The user may still
press the two keys to adjust performance. However,
the frequency of user interaction is likely to be
lower, and better approximates HAPPE after a brief
initial training period.

o During B-HAPPE, the user is provided with a bat-
tery life indicator that provides feedback on energy
use. It is otherwise equivalent to O-HAPPE.

5.4 Example of Dynamic Behavior

To illustrate user interaction with HAPPE, Figure 4
shows the time series data of a user playing the Torcs
car racing game under the control of HAPPE during the
training phase. Figure 4 shows the utilization of both
CPUs, the frequency sampled every second, and key
press events. When the user started playing the game,
frequency was set to the lowest level: 0.8 GHz. After 16
seconds, the user pressed the performance key. HAPPE
increased the frequency to 1.2GHz, and recorded the
frequency requirement of the user at this utilization level
in the frequency profile. Then, the user pressed the per-
formance key again at 22 seconds and 43 seconds, further
increasing the frequency to 2.2 GHz. At 67 seconds, the
user pressed the power key and presumably soon real-
ized that the resulting degradation in performance was
not tolerable. The user therefore pressed the performance
key after 7 seconds. Afterwards, frequency stayed at
2.2GHz for high CPU utilization levels, and 1.2 GHz for
low CPU utilization levels.

5.5 Comparing HAPPE with Linux Ondemand

Figure 5 illustrates the aggregated power consumption
and satisfaction ratings across all users and applications,
comparing HAPPE with the Linux ondemand frequency

controller. For each user, each application, and each tech-
nique (ondemand, T-HAPPE, O-HAPPE, and B-HAPPE),
we obtain the average power consumption during the
two minutes the user plays the game. For each applica-
tion and each technique, the following aggregated results
are presented in Table 1 (from left to right): average
power consumption of all users (in Watts), standard
deviation of average power consumption (in Watts), av-
erage satisfaction rating of all users, standard deviation
of average satisfaction rating, and the improvement in
power consumption compared to the Linux ondemand
controller. We make the following observations based on
the results presented in Table 1.

o Compared to the Linux ondemand governor, across
all four applications, the average reduction in power
consumption is 28.50% during the HAPPE training
phase, 24.39% during the HAPPE operating phase
without the battery indicator, and 26.56% during the
HAPPE operating phase with the battery indicator.
These results are expected, because (1) during the
training phase, the frequency starts low and only
increases gradually when the user requires higher
performance, and (2) the battery indicator, which
provides feedback on the long-term battery life ben-
efits of pressing the power key, gives the user more
incentive to save power.

o Across all four applications, the average user sat-
isfaction is 4.61 with the ondemand governor, 4.55
during the HAPPE training phase, 4.69 during the
HAPPE operating phase without the battery indi-
cator, and 4.63 during the HAPPE operating phase
with the battery indicator. These results indicate that
users are in general slightly less satisfied during the
training phase, and more satisfied during the op-
erating phase. In addition, the battery indicator can
motivate users to save power by pressing the power
key, but this appears to very slightly reduce their
satisfaction. Nonetheless, compared to the default
ondemand governor, during the HAPPE operating
phase, users satisfaction actually increases slightly.
This improvement could be noise, or might be due
to the fact that users are happier when they feel
they have control over the computer, i.e., when they
press the performance button, they see an instant

improvement in the performance/responsiveness?.

In summary, compared to the Linux ondemand fre-
quency controller, HAPPE reduces system-wide power
consumption by 25% on average, without degrading
user satisfaction.

5.6 Comparing HAPPE with the Best Possible DVFS

HAPPE produces a substantial full-system power re-
duction relative to the default ondemand controller. In

4. We considered the possibility of hardware thermal emergency
throttling during use of the ondemand governor. However, we ruled
out that explanation based on the dynamic frequency, temperature, and
power consumption measurements obtained during the user studies.

TABLE 1

Average System-Wide Power Consumption and User Satisfaction Rating

Run

Torcs
Pwr. Stdev Sat. Stdev Imp.

Quake3
Pwr. Stdev Sat. Stdev Imp.

Glest
Pwr. Stdev Sat. Stdev Imp.

Trackballs
Pwr. Stdev Sat. Stdev Imp.

ondemand
T-HAPPE
O-HAPPE
B-HAPPE

39.46 1.18 4.54 0.59 0.00%
30.38 2.32 4.42 0.58 23.02%
32.72 292 4.67 0.64 17.09%

31.00 2.31 4.33 0.70 21.45%

38.89 1.54 4.88 0.34 0.00%
28.03 0.46 4.88 0.34 27.93%
28.38 1.27 4.92 0.28 27.03%
2723 0.88 4.92 0.28 29.97%

3770 0.77 454 0.59 0.00%
27.58 1.72 450 0.59 26.85%
28.45 2.72 4.58 0.58 24.54%
28.43 2.52 4.67 0.56 24.60%

4230 0.51 4.46 0.72 0.00%
26.99 2.66 4.38 0.58 36.18%
30.07 6.05 4.58 0.50 28.91%
29.52 5.69 4.58 0.50 30.21%

Average power consumption

Power consumption (Watts)

Quake3
T-HAPPE

Glest Trackballs

Torcs

= ondemand O-HAPPE M B-HAPPE

Average user satisfaction rating

o
=
8 44
c
2 3
o
J
2 24
©
»
& 1
7]
D
0
Torcs Quake3 Glest Trackballs
= ondemand # T-HAPPE O-HAPPE M B-HAPPE

Fig. 5. Comparing HAPPE with Linux ondemand frequency controller.

TABLE 2
System-Wide Power Consumption of T61 at Different CPU Utilization Levels and Frequencies

Power Consumption (Watts)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0.8GHz | 2440 2480 2522 25.03 2537 25.81 25.81 2641 26.60 26.69 26.74
12GHz | 2573 26.02 2634 2595 2692 2740 2780 2792 2794 2815 2855
1.6GHz | 26.14 2673 2730 2793 2855 2951 2986 30.00 3050 31.19 3227
22GHz | 2935 30.01 30.81 3191 3277 3379 3487 3600 3725 3852 40.18
23GHz | 30.72 32.01 33.07 3475 3555 36.78 39.06 4052 4224 43.62 45.04

Temperature (C)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0.8GHz | 41.15 4145 41.70 42.00 42.00 42.00 42.00 42.00 42.00 4218 42.80
12GHz | 42.05 42.00 42.00 4248 4283 43.00 4343 4383 44.02 4478 45.00
1.6GHz | 4433 44.00 4465 4482 4552 46.05 4683 47.67 4813 4890 49.78
22GHz | 4792 4845 48.82 50.25 5137 52,67 53.73 55.02 56,58 5812 59.70
23GHz | 52.68 53.00 53.12 5440 5542 57.02 5852 6028 6192 6405 65.35

Table 2 and Figure 6, we present the measured re-
sults of average system power consumption and CPU
temperature of the laptop at all five frequencies and
ten CPU utilization levels derived by running a test-
ing application that allows fine-grained CPU utilization
control [19]. CPU frequency was kept static during the
experiments. We provide these results because (1) they
suggest the possible power reduction by scaling CPU
frequency, and (2) they may be used to derive a power
model for the laptop, in which power consumption is
a function of frequency (which influences voltage) and
CPU utilization. We think this may be helpful to some
potential readers.

To approximate the scenarios in the user study, we
subjected CPUO to 10 different load levels at each fre-
quency level, for one minute each. Recall that the testing
applications all require 3D graphics acceleration and are
all graphic processing unit (GPU) intensive. To approx-

imate the GPU load conditions during the user study,
we also ran a 3D screen saver that stresses the GPU but
not the CPU. We measured the power consumption of
the whole system using the data acquisition card and
sampled the temperature of CPUO every second from
the Linux ACPI interface.

As shown in the table, when CPU utilization is above
80%, the highest possible reduction in system-wide
power consumption by decreasing CPU frequency from
the highest level to the lowest level is 40.63%. However,
this brute-force strategy is very likely to annoy the user
because it does not consider any performance impact,
whereas HAPPE can provide significant power reduction
(25% in comparison with Linux ondemand) without
degrading user satisfaction.

5.7 Variation Among Users

Figure 7 shows the variation among users by presenting

Measured system power consumption at different CPU utilization levels

45 |
e /(/,r,
0 12GHZ -
5 1.6GHz - x B
= 40 29GHz & - |
< 23GHz -~ p D
o) |
= . D
E 35t - - |
g //// o
) . B
o .)
; 1 D U B O]
[L .
o5 L
0 10 20 30 40 50 60 70 80 90 100

CPU utilization (%)

10

Measured CPU temperature at different CPU utilization levels

70
0.8GHz ——
r 1.2GHz - y
% 1.6GHz - .
2.2GHz =| /.//
G 60 23GHz -=- . t
2 .)
g 55| - B A
g oo . o a
Q. g .
GEJ 5]
= 50] i - o
———————— PRIV S t]
40 50 60 70 80 90 100

CPU utilization (%)

Fig. 6. System-wide power consumption and CPU temperature as a function of CPU utilization and frequency.

Ondemand power

ITII]

1 2 3 4 5 6 7

8 9

Power consumption (Watts)

B HAPPE power
IIIIIIIIIIII

I TII1

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

User ID

Ondemand rating

User satisfaction rating

1 2 3 4 5 6 7 8 9

B HAPPE rating

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

User ID

Fig. 7. Variation among users: power consumption and satisfaction.

the power consumptions and satisfaction ratings of all 24
users, comparing O-HAPPE to ondemand. For each user,
we present the average power consumption and average
satisfaction ratings for the four test applications, and
show the standard deviations using error bars. As shown
in the figures, there is significant variation among users.
Some users are very sensitive to performance change
as a result of varying processor frequency, and require
high frequencies to be satisfied, resulting in high power
consumption (e.g., user 10); others are less sensitive to
the performance difference, and are satisfied at lower
frequencies, resulting in lower power consumption (e.g.,
user 7).

5.8 Variation Among Applications for Same User

In this section, we present the variation among the per-
formance requirements for different applications from
the same user. We also provide additional evidence
of an important point made in Section 3: performance
demands depend strongly on user and application. If one
were to consider variation among users but ignore vari-
ation among applications for the same user, the resulting
DVEFS technique would fail to satisfy the user or waste
power. In this section, we analyze the importance of
adapting dynamically to learned application- and user-
dependent requirements.

Figure 8 illustrates a randomly-selected user playing
Torcs (car racing game), and Quake3 (shooting game),
under the control of ondemand and O-HAPPE. Under
the control of HAPPE, when playing Torcs, the user

CPU utilization and frequency under ondemand (Quake3)

T T T
¥
ES
s)
Re] >
© 5]
S =
E 3
]
=) £
o
o)
o o
B ‘ !)
J '
[CPUO utlllzatlon —
= CPU1 utilization - -
I Frequency-»- - - - - o0s8
= 1
\ I
o lruh Aop) o A=A A A A ARA A LA AN A
0 20 40 60 80 100 120
Time (sec)
CPU utilization and frequency under ondemand (Torcs)
T T T T
g
S
o
< s
ie) >
©)
Iy =
E 2
S5
9]
2 £
© 2
(@]
20 ht. CPUO utilization
i " v CPU1 utilization ——-- |
i) Frequency ----- 0.8
10 Iy . X .
Iy v AR AN
0 ~ 'l”\\ AN L |\/ /\,\ an /i WA ‘\,’ \ |\\/ AR
0 20 40 60 80 100 120

Time (sec)

11

CPU utilization and frequency under HAPPE (Quake3)

100 T
* W
80 |-
~N
e 0F —23 T
b —22 O
o 60 >
- o
© c
2 50 o}
S H16 &
D 40 | £
o I o)
O CPUO utilization T
30 — CPU1 utilization ----— 1.2 O
Frequency -----
20 |-
L R R - 08
10 1 Ao N
. \\]‘y’[\v*w"/l\v\//‘\/’,\"\’\ : APWN ~ :I\ S M \/»; ! \ \/\ ,\,\/I‘\«, \ /\ -~y
0 20 40 60 80 100 120
Time (sec)
CPU utilization and frequency under HAPPE (Torcs)
100 F T T
90
80 |-
N
o 70 23 T
3 i 122 O
c L =~
_% 60 : 5
C
2 s)
= T | I o
E 40 1+ . ~.°’=)
' o}
© sl j | 5
””” 1
17 [
20 |1 Perf. ke il CPUO utilization
T Yoo CPUA ufilization —----
) i Frequency ----- —1038
10 H ‘ I : " ,\\ My
1 ~
o U WLeaes IV \"A’\\f“ A ’)\,\’ \'\ SR/ v
0 20 40 60 80 100 120

Time (sec)

Fig. 8. Variation among different applications for same user.

pressed the performance key once at 20 seconds, and
presumably became satisfied with the resulting 1.6 GHz
frequency. Therefore, HAPPE set the CPU frequency to
1.6GHz at high utilization levels and 1.2GHz at low
utilization levels. On the contrary, when playing Quake3,
the same user was satisfied with the lowest frequency,
and did not press the performance key at all. Therefore,
HAPPE set the CPU frequency to 0.8 GHz at all times.
In contrast, the ondemand governor did not distinguish
between the two applications, and decided frequency
using only CPU utilization. Because both applications
are CPU-intensive, the frequency stayed at the highest
level most of the time, wasting power without an impact
on user satisfaction.

5.9 Variation Among Groups

In order to determine whether HAPPE is appropriate for
users with varying degrees of familiarity with the ex-
perimental workload, we calculated the average power
reduction it permitted for self-reported master level
game players (23.16%), moderate-level game players
(25.91%), and beginners (30.29%). The opportunity for
saving power is smaller for users with greater expertise
but remains substantial.

5.10 Analysis of User Feedback

A key question remains: “How much user input will
HAPPE require to work well?” Put more formally,
“How often will the power management parameters
appropriate for a particular user-application combina-
tion change?” To answer this question, we analyzed the
relationship between the frequencies of power and per-
formance key presses and cumulative training/operating
time. After the training phase, user input is not required
but is still permitted. Therefore, if the user’s performance
requirements at different CPU utilization levels for this
application do not change, the user does not need to
press the power and performance keys again. Table 3
presents the number of key presses during the training
phase and the operating phase, averaged over all users.
There are usually more performance key presses and
fewer power key presses during the training phase
than the operating phase. On average, less than two
performance key presses per minute are necessary for
users to adapt to a desired frequency, during the first
few minutes of the training phase.

We compare the average number of user inputs of
HAPPE to that of UDFS [11]. UDFS requires 5.73 key
presses per minute, averaged across all three evaluated

12

0.75

o=z

Torcs Quake3 Glest Trackballs
1.25 T T T T T T T T T T T T
T-HAPPE T-HAPPE T-HAPPE T-HAPPE
O-HAPPE ----- O-HAPPE ----- O-HAPPE ----- O-HAPPE -----
1.00 B-HAPPE ------ B-HAPPE ------ 11 B-HAPPE ------ 1L B-HAPPE ------]

Avg. number of keypresses per 10 s

60

800 20 40 60 80

Elapsed time after first keypress (s)

T
)

TABLE 3
Average Number of Key Presses Per Minute

Training phase Operating phase

App. Perf. key Power key | Perf. key Power key
Torcs 1.13 0.40 0.46 0.27
Glest 0.36 0.23 0.19 0.34
Trackballs 0.69 0.14 0.14 0.16
Quake3 0.13 0.38 0.11 0.38

applications and all 20 users. In contrast, HAPPE re-
quires 0.86 key presses per minute during the training
phase and 0.51 key presses during the operating phase,
averaged across all four evaluated applications and all
24 users. Furthermore, UDFS always slowly decreases
frequency until the user expresses discomfort via key
presses. Although UDEFES adapts the rate of frequency
decrease to user input, users are never free of key
presses, i.e., after a certain time period, they must press
the key again to change to a desirable frequency. In
contrast, once a user is satisfied with the performance
and frequency profile, HAPPE never requires key presses
again. Figure 9 illustrates the frequency of the need to
provide input via key presses as a function of time,
averaged over all users for each of the four testing
applications. The x-axis represents elapsed time after the
first key press, and the y-axis represents the average
number of key presses in every 10-second interval. As
shown in the figure, the training phase generally requires
more key presses. However, as time goes by, the number
of key presses decreases dramatically during both the
training phase and the operating phase.

6 CONCLUSIONS AND FUTURE WORK

For CPU-intensive interactive applications, traditional
DVES policies based on fixed CPU utilization thresh-
olds usually select unnecessarily high frequencies and
therefore waste power. In this paper, we have presented
HAPPE, a dynamic CPU DVFS controller that adapts
CPU voltage and frequency to the performance require-
ments of individual users and applications. HAPPE uses

. 9. Aggregated histogram of key presses.

a learning algorithm that creates a profile for each user
and application. For each CPU utilization level, HAPPE
learns the frequency necessary to satisfy the user. The
learning algorithm trains the profile by accepting user
key-press inputs during the first few minutes the first
time the user runs the application. After the training
phase, HAPPE does not require continued user input.
We evaluated HAPPE with a study on 24 users and
four test applications. Compared to the Linux default
ondemand frequency governor, HAPPE reduces system-
wide power consumption by 25% on average, without
degrading user satisfaction.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation under awards CNS-0720691 and CNS-
0347941. We would like to acknowledge Xi Chen at
University of Michigan for helping us to set up the CPU
load test. We would also like to acknowledge Yue Liu
at the University of Michigan for helping us to quantify
the performance overhead of HAPPE.

REFERENCES
[1] A. Mahesri and V. Vardhan, “Power consumption breakdown on
a modern laptop,” in Proc. Wkshp. on Power Aware Computing
Systems, Int. Symp. Microarchitecture, Dec. 2004.

V. Pallipadi and A. Starikovskiy, “The ondemand governor: Past,
present, and future,” in Proc. Linux Symposium, vol. 2, July 2006.
“Windows native processor performance control,” Microsoft Cor-
poration, Tech. Rep., 2002.

A. Gupta, B. Lin, and P. A. Dinda, “Measuring and understanding
user comfort with resource borrowing,” in Proc. Int. Symp. on High
Performance Distributed Computing, June 2004, pp. 214-224.

A. Shye, B. Ozisikyilmaz, A. Mallik, G. Memik, P. A. Dinda, R. P.
Dick, and A. N. Choudhary, “Learning and leveraging the rela-
tionship between architecture-level measurements and individual
user satisfaction,” in Proc. Int. Symp. Computer Architecture, June
2008, pp. 427-438.

H. Sasaki, Y. Ikeda, M. Kondo, and H. Nakamura, “An intra-task
DVFS technique based on statistical analysis of hardware events,”
in Proc. Int. Conf. Computing Frontiers, May 2007.

K. Choi, R. Soma, and M. Pedram, “Dynamic voltage and fre-
quency scaling based on workload decomposition,” in Proc. Int.
Symp. Low Power Electronics & Design, Aug. 2004.

(2]
(3]
(4]

(5]

(6]

(71

[8] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu,
J. Lee, and D. Brooks, “A dynamic compilation framework for
controlling microprocessor energy and performance,” in Proc. Int.
Symp. Microarchitecture, Nov. 2005, pp. 271-282.

[9] R. Xu, D. Mossé, and R. Melhem, “Minimizing expected energy
consumption in real-time systems through dynamic voltage scal-
ing,” ACM Trans. on Computer Systems, Dec. 2007.

[10] J. R. Lorch and A. J. Smith, “Using user interface event infor-
mation in dynamic voltage scaling,” University of California at
Berkeley, Tech. Rep., Aug. 2002.

[11] B. Lin, A. Mallik, P. Dinda, G. Memik, and R. P. Dick, “User and
process-driven dynamic voltage and frequency scaling,” in Proc.
Int. Conf. Performance Analysis of Systems and Software, Apr. 2009,
pp- 11-22.

[12] K. Flautner and T. Mudge, “Vertigo: Automatic performance-
setting for Linux,” in Proc. Int. Symp. Operating Systems Design
and Implementation, Dec. 2002.

[13] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer, “Using latency
to evaluate interactive system performance,” in Proc. Int. Symp.
Operating Systems Design and Implementation, Oct. 1996.

[14] A.Mallik, B. Lin, P. Dinda, G. Memik, and R. P. Dick, “User driven
frequency scaling,” IEEE Computer Architecture Ltrs., vol. 5, no. 2,
pp- 16-19, Dec. 2006.

[15] L. Yan, L. Zhong, and N. K. Jha, “User-perceived latency driven
voltage scaling for interactive applications,” in Proc. Design Au-
tomation Conf., June 2005.

[16] A. Mallik, J. Cosgrove, R. P. Dick, G. Memik, and P. Dinda,
“PICSEL: Measuring user-perceived performance to control dy-
namic frequency scaling,” in Proc. Int. Conf. Architectural Support
for Programming Languages and Operating Systems, Mar. 2008, pp.
70-79.

[17] A.Shye, Y. Pan, B. Scholbrock, J. S. Miller, G. Memik, P. Dinda, and
R. P. Dick, “Power to the people: leveraging human physiological
traits to control microprocessor frequency,” in Proc. Int. Symp.
Microarchitecture, Nov. 2008, pp. 188-199.

[18] A. Rahmati, A. Qian, and L. Zhong, “Understanding human-
battery interaction on mobile phones,” in Proc. Int. Conf. Human
Computer Interaction with Mobility Devices and Services, Sept. 2007.

[19] P. Dinda and D. O’Hallaron, “Realistic CPU workloads through
host load trace playback,” in Proc. Wkshp. on Languages, Compilers,
and Run-time Systems for Scalable Computers, May 2000.

Lei Yang received her Ph.D. degree in 2008
from Northwestern University, Dept. of Electrical
Engineering and Computer Science. She also
holds a Bachelor’s degree from Peking Univer-
sity and a Master’s degree from Northwestern
University. Her work on online memory com-
pression won a Computerworld Horizon Award
for high-impact commercially-used information
technology. She has published in a wide range
of embedded system design topics including
data compression, memory hierarchy design,
and user satisfaction driven power management. She is now a software
engineer at Google.

13

Robert Dick (S'95-M’02) is an Associate Pro-
fessor of Electrical Engineering and Computer
Science at the University of Michigan. He re-
ceived his Ph.D. degree from Princeton Univer-
sity in 2002 and his B.S. degree from Clarkson
University in 1996. He worked as a Visiting
Professor at Tsinghua University’s Department
of Electronic Engineering in 2002, as a Visiting
Researcher at NEC Labs America in 1999, and
was on the faculty of Northwestern University
from 2003-2008. Robert received an NSF CA-
REER award and won his department’s Best Teacher of the Year award
in 2004. In 2007, his technology won a Computerworld Horizon Award
and his paper was selected as one of the 30 in a special collection of
DATE papers appearing during the past 10 years. His 2010 work won a
Best Paper Award at DATE. He is an Associate Editor of IEEE Trans. on
VLSI Systems, a Guest Editor for ACM Trans. on Embedded Computing
Systems, was the Technical Program Committee Co-Chair of the 2011
International Conference on Hardware/Software Codesign and System
Synthesis, and serves on the technical program committees of several
embedded systems and CAD/VLSI conferences.

Gokhan Memik (S’98-M’03) is an Associate
Professor at the Electrical Engineering and
Computer Science Department of Northwestern
University. He received the B.S. degree in Com-
puter Engineering in 1998 from Bogazici Uni-
versity and PhD in Electrical Engineering from
University of California at Los Angeles (UCLA)
in 2003. He is the author of 2 book chapters
and over 100 refereed journal/conference pub-
lications. Papers co-authored by him have been
nominated for a best paper award at DAC (2005)
and MICRO (2008) and won the Best Student Paper Award at Su-
percomputing (2007). He has served in over 30 program committees,
was the co-chair for the Advanced Networking and Communications
Hardware Workshop (ANCHOR) and the program co-chair of 2007 In-
ternational Symposium on Microarchitecture (MICRO-40). He is also an
associate editor of International Journal on Reconfigurable Computing.
Gokhan Memik is the recipient of the Wissner-Slivka Junior Chair (2006—
2009), National Science Foundation CAREER Award (2008—-2013), and
Department of Energy Early CAREER PI Award (2005-2008).

Peter Dinda (S'92-M’00) is a professor in the
Department of Electrical Engineering and Com-
puter Science at Northwestern University, and
head of its Computer Engineering and Systems
division, which includes 17 faculty members. He
holds a B.S. in electrical and computer engi-
neering from the University of Wisconsin and a
Ph.D. in computer science from Carnegie Mellon
University. He works in experimental computer
systems, particularly parallel and distributed sys-
tems. His research currently involves virtual-
ization for distributed and parallel computing (v3vee.org and virtu-
oso.cs.northwestern.edu), programming languages for sensor networks
(absynth-project.org), and empathic systems for bridging individual user
satisfaction and systems-level decision-making (empathicsystems.org).
More information can be found at pdinda.org.

	Introduction
	Related Work
	User-Perceived Performance
	The HAPPE Approach
	User Application Frequency Profile
	Training Phase
	Implementation and Discussions

	Evaluation Results
	Setup for Power Measurements
	Power Key Feedback
	Setup for User Study
	Example of Dynamic Behavior
	Comparing HAPPE with Linux Ondemand
	Comparing HAPPE with the Best Possible DVFS
	Variation Among Users
	Variation Among Applications for Same User
	Variation Among Groups
	Analysis of User Feedback

	Conclusions and Future Work
	References
	Biographies
	Lei Yang
	Robert Dick
	Gokhan Memik
	Peter Dinda

