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ABSTRACT

Third party JavaScripts not only offer much richer features
to the web and its applications but also introduce new threats.
These scripts cannot be completely trusted and executed
with the privileges given to host web sites. Due to incom-
plete virtualization and lack of tracking all the data flows,
all existing approaches without native sandbox support can
secure only a subset of third party JavaScripts, and they
are vulnerable to attacks encoded in non-standard HTML/-
JavaScript (browser quirks) as these approaches will parse
third party JavaScripts independently at server side without
considering client-side non-standard parsing quirks. At the
same time, native sandboxes are vulnerable to attacks based
on unknown native JavaScript engine bugs.

In this paper, we propose Virtual Browser, a full browser-
level virtualized environment within existing browsers for
executing untrusted third party code. Our approach sup-
ports more complete JavaScript language features including
those hard-to-secure functions, such as with and eval. Since
Virtual Browser does not rely on native browser parsing
behavior, there is no possibility of attacks being executed
through browser quirks. Moreover, given the third-party
Javascripts are running in Virtual Browser instead of native
browsers, it is harder for the attackers to exploit unknown
vulnerabilities in the native JavaScript engine. In our de-
sign, we first completely isolate Virtual Browser from the na-
tive browser components and then introduce communication
by adding data flows carefully examined for security. The
evaluation of the Virtual Browser prototype shows that our
execution speed is the same as Microsoft Web Sandbox[27],
a state of the art runtime web-level sandbox. In addition,
Virtual Browser is more secure and supports more complete
JavaScript for third party JavaScript development.
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1. INTRODUCTION
Modern web sites often use third party JavaScripts to en-

rich user experiences. Web mashups combine services from
different parties to provide complex web applications. For
example, a web site may use JavaScript games from other
party to attract users, include JavaScript code from targeted
advisement companies for increasing revenue, embed a third
party counter to record the number of visited users, and en-
able third party widgets for richer functionalities. In each
of these cases, some third party JavaScripts, which are not
developed by the web site, have the same privileges as the
JavaScript code from the web site itself. Although these
third party JavaScripts enrich the functionalities of the web
site, malicious third party Javascripts can potentially fully
subvert the security policy of the web site, and launch all
kinds of attacks.

Therefore, in this paper, we propose Virtual Browser, a
virtualized browser built on top of a native browser to sand-
box third-party JavaScript. The idea of Virtual Browser
is comparable to that of virtual machines. It is written in
a language that a native browser supports, such as Java-
Script, so that no browser modification is required. Virtual
Browser has its own HTML parser, CSS parser, and Java-
Script interpreter, which are independent from the native
browser. Third party JavaScripts are parsed only once in
Virtual Browser and run on top of the virtual JavaScript
interpreter. The untrusted third party JavaScripts are iso-
lated from the trusted JavaScripts of the web site by design.
Virtual Browser introduces only the necessary communica-
tions between the JavaScripts from the web site and the
third party JavaScripts.

Existing works such as Microsoft Web Sandbox [27] and
Google Caja [20] may also be thought of as employing vir-



���������	
���
������	

������������

��	�
����
������	�������

���������	���	���������������������� ���������	
������	����

�������������	�
������	�
����������!	�����������"�#�������$

�����	�

����%�	��

�����

��	�
����
������	�������

&��	������
������	�������

���������	
���
������	

�	���	�����!�&��	����'��(���� ���������	
������	����

�����������
��	������������	���	�
��������"�������$

����	�����

�����	�

�����	�

����	�����

�����	�

Figure 1: Classical Structure vs. Virtual Browser

tualization but our technique is significantly different. The
key difference is whether third party JavaScripts are di-
rectly running on a native JavaScript engine. Figure 1 illus-
trates the difference. Virtual Browser executes third party
JavaScripts on a virtualized JavaScript engine; on the other
hand, existing approaches check the parameters of each third
party JavaScript expression and then let them execute di-
rectly on the native JavaScript engine. Web Sandbox[27]
makes a big step toward virtualization. It provides a vir-
tualized environment for native execution of third party
JavaScripts, but its execution is still restricted by the param-
eter checking model. As shown in Figure 2(a), it provides
a virtualized environment for for loop. All the variables are
fetched from the virtualized environment. However, the for
loop itself is still running on a native JavaScript engine1. As
shown in Section 2, this is the reason why they are vulnera-
ble to unknown native JavaScript engine vulnerabilities and
it is hard for them to handle dynamic JavaScript features
like eval and with.

Security is the key property of our design. In order to
make Virtual Browser secure, we need to prevent third party
JavaScripts from directly running on a native JavaScript en-
gine. Two methods are used here to achieve our design:
avoidance and redirection. Avoidance means that we avoid
using some dangerous functions in the native browser when
implementing Virtual Browser. The dangerous functions
are functions that potentially lead a JavaScript string to be
parsed and executed on the native JavaScript engine. For
example, native eval in JavaScript can execute a string. If
eval is not used appropriately, third party scripts, which are
input to Virtual Browser as a string, can flow to the native
eval and get executed. Hence, we do not use the native eval
function when implementing the virtual browser. This en-
sures that there is no way for third party JavaScripts to ex-
ploit the Virtual Browser to access the native eval function.
Redirection means we redirect data flows to a place that is
ensured to be secure. For example, third party JavaScripts

1Microsoft Web Sandbox actually transforms the for loop
into for(e(b, ”i”, 0); c(b, ”i”) < 10; i(b, ”i”, 1)) for concise-
ness. Since the sentence is difficult to be read, we change
its presentation to be a human-readable manner as shown
in Figure 2.
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Figure 2: Comparison of Web Sandbox and Virtual
Browser when Executing For-loop

may leak to the native JavaScript engine through calls to the
function setTimeout. Instead of letting the flow go into the
native JavaScript engine, we redirect it back to the virtual
JavaScript engine. We will present the details about how we
use these two methods in Section 4.

The execution speed of our system is similar to that of
Web Sandbox [27] and is fast enough to sandbox reasonable
lengths of third party JavaScripts as discussed in Section 6.1.
We find that even animation scripts, which trigger events
much more frequently than average scripts, can work well
with Virtual Browser.
Contributions: We make the following contributions.

• Virtualization. We propose the concept of Virtual Browser
and adopt virtualization to provide security. Although
earlier works may be conceived of as implementing some
sort of virtualization, it is incomplete; we are the first to
provide browser-level virtualization.

• Enhanced Security for Isolation2. As shown in Sec-
tion 2, compared to native sandboxes [26, 35] that purely
rely on iframe for isolation, Virtual Browser is more ro-
bust to unknown native JavaScript engine vulnerabilities.

• Securing even traditionally Unsafe Features in Java-
Script. A recent measurement study [40] reveals that
44.4% of their measured web sites use eval. In addition,
Guarnieri et al. [21] shows that 9.4% of widgets use with.
Thus, it is important to secure these functionalities.

2. MOTIVATION AND RELATED WORK
Related work in securing third-party JavaScript can be

classified into two categories: approaches using JavaScript
features and approaches using native browser features.
Securing Third-party JavaScript by Using JavaScript
Features. Existing works about securing third-party Java-
Script by using JavaScript features can be classified into
three sub-categories: static, runtime, and mixed approaches.

• Static Methods. Many approaches, such as ADSafe [1],
FBJS [4], CoreScript [39], and Maffeis et al. [24], restrict
JavaScript to a subset and perform static check and en-
forcement upon third-party JavaScript.

2For securing communication between trusted and third
party JavaScripts, Virtual Browser DOES NOT improve
state-of-the-art.



Approaches with native browser support JavaScript level approaches

Modifying Approaches [18] Using Static methods Mixed Runtime approaches

browsers Using iframe [1, 39, 24, 30] methods
Others [20, 27] Virtual Browser

[26, 12] NaCl [35, 16] [21, 22]

Robust to browser quirks Yes Yes Yes No No No Yes

Robust to drive-by-
downloads

No Yes No No Partial Partial Yes

(1) Caused by unknown
JavaScript engine vul-
nerabilities

No Yes No No No No Yes

(2) Caused by others No Yes No No Yes Yes Yes

Dynamic JavaScript fea-
ture support (like eval
and with)

Yes Yes Yes No No No Yes

Support by all browsers No No Yes Yes Yes Yes Yes

Speed Fast Fast Fast Fast Medium Slow Slow

Table 1: Comparing Virtual Browser with Existing Approaches

• Runtime Methods. Microsoft Web Sandbox[27] and Google
Caja[20] rewrite JavaScript to wrap up every dangerous
part and perform runtime check with its own libraries.
BrowserShield[31] and Kikuchi[23] are middle box solu-
tions put at a proxy or a gateway. They wrap JavaScript
with checking code at the middle box and perform run-
time check at client side.

• Mixed Methods. Gatekeeper[21], a mostly static method
also contains some runtime methods. It performs a points-
to analysis on third-party JavaScript code and deploys
policies during runtime. Huang et al. also check informa-
tion flow at client side and protect client at runtime[22].

Securing Third-party JavaScript by Native Browser
Features. Approaches using native browser features can be
classified into three sub-categories: modifying native browser,
using plugin, and using iframes.

• Browser Modification. ConScript [26]/WebJail [12] mod-
ify the IE8/Firefox browser kernel to enforce the deploy-
ment of policies (advices). MashupOS [37] proposes a
new HTML tag Sandbox to secure Mashups by modifying
native browsers. OMash [16] modifies Firefox to adopt
object abstraction and isolate Mashups.

• Using Plugins. AdSentry [18] executes third-party codes
in a shadow JavaScript engine sandboxed by Native Client
[38].

• Using iframes. AdJail [35] and SMash [17] proposes using
iframes to isolate third-party JavaScript.

Comparing with Virtual Browser. We discuss four im-
portant points: (a) Robustness to browser quirks, (b) Ro-
bustness to unknown native JavaScript engine vulnerabili-
ties, (c) Support of some dynamic language features, and (d)
Support by all existing browsers. The comparison is shown
in Table 1.

First, we show how browser quirks, non-standard HTML
and JavaScript, influence present approaches. All existing
web browsers support browser quirks, because web-programmers
are humans, and mistakes are very likely during program-
ming. Browser quirks have previously been well studied in
BluePrint[36] and DSI [29]. For example, the server side fil-
ter on the Facebook server had such vulnerability [34]. A
string <img src=”...” onload:=attackcode> is interpreted as
<img src=”...” onload = attackcode> at browsers (Firefox
2.0.0.2 or lower) but as <img src=”...”> at the server-side
filter.

All existing JavaScript level approaches [21, 1, 30, 27, 20]
define a particular server side (or middle-box) interpretation
which may be very different from the browsers’ interpreta-
tion, and hence remain vulnerable to such attacks. In Vir-
tual Browser, those attacks will not happen because scripts
are parsed only once at client-side.

Second, existing native sandboxing approaches that purely
rely on iframe for isolation, like AdJail [35] and SMash [17],
and JavaScript level approaches, like Web Sandbox [27], are
vulnerable to unknown native JavaScript engine vulnerabili-
ties but Virtual Browser is more robust to unknown attacks.

We take the for loop as an example in Figure 2 again. As-
sume there is an unknown integer overflow in the for loop of
native browser that is triggered by for(i = a; i < b; i = i+c)
when a, b, and c are certain values. For a native sandbox, the
vulnerability can be directly triggered. Because the vulner-
ability is unknown, neither Web Sandbox nor BrowserShield
[31] (from which Web Sandbox evolved) can check the pa-
rameters and spot the attack. The vulnerability can still be
directly triggered because as shown in Figure 2(a), the for

loop is running on native JavaScript engine.
In Virtual Browser, since it interprets the for loop, direct

input of the for loop will not trigger the vulnerability. As
shown in Figure 2(b), the for loop is not running directly
on the native JavaScript engine. In order to compromise
the native browser with this vulnerability, virtual browser
source code needs to have the sentence with exactly the same
pattern: a for-loop where a, b and c are all open inputs.
Then attackers need to manipulate other inputs to let the
sentence in virtual browser source code get the certain values
that can trigger the attack. Either of the two conditions is
not easy to satisfy, as evaluated in Section 6.3.

Third, some dynamic language features, such as eval and
with, are not supported in present JavaScript level approaches.
Developers however still use eval to parse JSON strings in
old browsers with no native JSON support. Gatekeeper [21]
reveals that about 9.4% of widgets use with.

As shown in Figure 1, the classical runtime approaches
(such as the runtime part in GateKeeper [21]) employ a pa-
rameter checking model, implying that they cannot check
the safety of eval and setTimeout, whose parameters contain
JavaScript code. and need to be passed to the JavaScript
parser. Web Sandbox [27] itself does not execute third party
scripts, and therefore it is hard to switch execution con-
texts for with statement. Meanwhile, although it is possible



to recursively transfer arguments of eval back to the server
for further transforming, large client-server delays will occur
and render the approach extremely slow. Therefore, in the
implementation of Web Sandbox, with is not supported and
the support of eval is incomplete.

Fourth, those approaches, which modify existing browsers
or utilize plugins like Native Client [38], are not supported
by all existing browsers. Mozilla publicly rejects adopting
NaCl [8], and meanwhile there is not clue that IE and Opera
will adopt NaCl either. Therefore, those approaches can
protect only a limited number of users who deploy their
approaches. Virtual browser uses only JavaScript features
that are supported by all present browsers.

3. DESIGN
In Section 3.1, we first introduce the architecture of Vir-

tual Browser. Then we give several JavaScript examples to
show how exactly Virtual Browser works in Section 3.2.

3.1 Architecture
The architecture of Virtual Browser is shown in Figure

3. Virtual Browser is very similar to a native web browser
except that it is written in JavaScript. We will introduce the
interface, components and flows of Virtual Browser below.

3.1.1 Interface

Similar to Microsoft Web Sandbox, Virtual Browser takes
a string, which contains the code of a third-party JavaScript
program, as input. For example, we are using the following
codes to include third-party JavaScripts.

<script> evaluate(str); </script>

str is a string that represents a third-party JavaScript
code, which can be embedded inside host web pages. Main-
tenance of str is vulnerable to string injection attacks. In
our approach, we leverage Base64 encoding, one of the many
existing ways [36, 29] to prevent string injection attacks.

Virtual Browser also provides a file loading interface.

<script> run("http://www.a.com/JS/test.js"); </script>

An XMLHTTPRequest will be made to the same ori-
gin web server (where all third-party and trusted codes and
Virtual Browser are fetched) first by Virtual Browser. The
same origin web server will redirect the request to the real
web server (www.a.com). Therefore received contents will be
fed into the aforementioned evaluate interface.

3.1.2 Components and Data Objects

The functionality of these components and data objects
in Virtual Browser is similar to their corresponding parts in
native browser.
Components of Virtual Browser include a virtual Java-
Script parser, a virtual JavaScript execution engine, a vir-
tual HTML parser, a virtual CSS parser and so on.

• Virtual JavaScript Parser: It parses third-party Java-
Script codes and outputs the parsed JavaScript AST tree.

• Virtual JavaScript Execution Engine: It executes the parsed
JavaScript AST tree from virtual JavaScript parser. The
interface of the JavaScript execution engine has three
parts: putValue, getValue and function call/return. put-
Value is loaded every time an object is changed. Every

modification to a private (defined by third-party) func-
tion/variable or a shared (from trusted scripts or third-
party) function/variables goes through putValue. Get-
Value provides an interface for every read operation. Func-
tion call/return are used for calling shared functions from
natively running code and private functions from third-
party codes. Our design of the interface of the virtual
JavaScript engine is similar to the one of the native Java-
Script engine. Several works[10, 15] have details about
the native JavaScript engine’s interface.

• Virtual CSS Parser: It parses CSS codes and attaches
the results to Virtual DOM.

• Virtual HTML Parser: It parses HTML codes provided
by other components and output DOM tree.

Data objects of Virtual Browser include virtual DOM and
other private objects.

• Virtual DOM: It is linked to the native DOM as an iframe.
The link is purely for virtual DOM to be shown on the
screen. JavaScript access to native DOM from third-
party codes is forbidden by our virtualization technique as
shown in Section 4.1. JavaScript access to virtual DOM
from trusted codes is also forbidden by iframe isolation3.
Meanwhile, the native DOM also transfers all the events
generated automatically by native browsers back to Vir-
tual Browser.

• Private Objects: Private data is used to store JavaScript
objects that is only accessible to third party JavaScript in
Virtual Browser. Section 4.1.2 gives the isolation details.

3.1.3 Flows

Flows inside Virtual Browser. When a third-party Java-
Script code runs into Virtual Browser, the virtual JavaScript
parser will first parse it to an AST tree and give the tree to
the virtual JavaScript execution engine. The virtual Java-
Script execution engine will execute the AST tree similar to
a normal JavaScript interpreter does. When HTML content
is found, virtual JavaScript execution engine will send it to
the virtual HTML parser. Similarly, JavaScript codes and
CSS style sheets will be sent to the virtual JavaScript and
CSS parsers. Virtual HTML parser will parse HTML and
will send scripts/style sheets to the virtual JavaScript/CSS
parsers. All of these processes are shown in Figure 3. We
will give a detailed analysis on these flows in Section 4.2.2.
Flows between Virtual Browser and Trusted Codes.
Virtual Browser is isolated from trusted codes as analyzed
in Section 4.1. The only flow left is a shared object4 that
connects trusted codes running upon a native browser and
third-party codes running on a Virtual Browser.

3.2 Examples for Several JavaScript Opera-
tions

3Notice that the isolation provided by iframe is purely for
preventing access to virtual DOM from trusted code by mis-
take so that privilege escalation can be minimized (Please
refer to Section 4.1.2 for details). Virtual Browser is still
more robust to unknown native JavaScript engine vulnera-
bilities than native sandbox approaches, like AdJail [35].
4Object here is an abstracted concept, which can also be a
single value. According to some recent work done by Barth
et al.[13], in some cases, values might be less error-prone
than objects.
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Figure 4: Securing Several Dynamic JavaScript Op-
erations

In this section, we illustrate several JavaScript operations
in Virtual Browser to show how Virtual Browser works.
Some of them are not supported by previous approaches.
with. with is a notoriously hard problem in this area. None
of the existing works can solve this problem. In our system,
with becomes quite simple because Virtual Browser inter-
prets JavaScript. For example, as shown in Figure 4(a),
with exp in our system is just a switch of current context.
eval. eval is often disallowed by existing approaches to-
tally or partially because it will introduce additional un-
predictable JavaScript. As shown in Figure 4(b), Virtual
Browser just needs to redirect contents inside eval back to
our virtual JavaScript parser. No matter how many evals are
embedded, such as eval(eval(...(alert(’1’))...), JavaScript is
still executing inside our virtual JavaScript engine.
document.write/innerHTML. document.write and inner-
HTML are related to the HTML parser. As shown in Figure
4(c), when virtual JavaScript execution engine encounters
functions/variables like these, it will redirect them to the
virtual HTML parser by calling methods in virtual DOM.
If scripts like < script src = ”..” > are found in those
HTML codes, an XMLHTTPRequest like http://www.foo.

com/get.php?req=... will be sent to the same origin web
server (www.foo.com, where all third-party and trusted codes

and Virtual Browser are fetched) due to same-origin pol-
icy restriction and then redirected to the real web server.
JavaScript contents will be received and redirected back to
virtual JavaScript parser.
arguments. arguments are implemented inside a function.
Arguments of the current function are stored in the current
running context. When the third party codes use arguments,
Virtual Browser can fetch them directly.

4. SECURITY ANALYSIS
In this section, we analyze the security of Virtual Browser

by making sure third-party JavaScripts and their data flows
only inside Virtual Browser, and create necessary commu-
nication channels to the data and resources outside Virtual
Browser. We adopt two methods to ensure security : avoid-
ance and redirection. In Section 4.1, we sandbox all the
components inside Virtual Browser by cutting off the inflows
and outflows to and from the sandbox. We avoid using some
of JavaScript’s dangerous functions in the Virtual Browser
implementation to achieve isolation. In Section 4.2, we en-
able shared objects and communications with security access
control. Because we have already built an isolated sandbox,
in the second part of the design, we mainly redirect danger-
ous flows within the third party code back to the sandbox
to facilitate communication.

4.1 Isolation through Avoidance
As we mentioned before, we design our sandbox as an-

other browser built on top of existing browsers, which we
call the Virtual Browser, similar to the concept of a vir-
tual machine. The right part of Figure 1 shows a Virtual
Browser upon a native browser. The Virtual Browser and
the trusted JavaScripts from the web site are all running on
the native browser. The third-party JavaScript is running
on the virtual browser. The method for building the Virtual
Browser is similar to building a native browser. We need
to build a JavaScript engine, HTML parser, CSS parser and
so on. Those components are fully written in JavaScript.
We will not focus on how to implement each of the com-
ponents here, which are not very different from writing a
native browser. What we are interested in is how to isolate
the Virtual Browser from native browsers. Since we have
not introduced communication yet, we only need to enforce



isolation between the trusted JavaScripts from the web site
and the third-party JavaScripts.

4.1.1 Cutting off Outflows of Virtual Browser

Cutting off outflows of Virtual Browser means that we
want to prevent the third-party codes that run on Virtual
Browser from running directly on the native browser. We en-
sure the third-party codes are trapped inside Virtual Browser.
To achieve that, we have the following assumption.

Any JavaScript code has to be parsed in the native Java-
Script parsers before it can be executed in native browser.

The Virtual Browser treats a third-party JavaScript as a
string, and the string is the input for a virtualized browser
instance. Virtual Browser calls the virtual JavaScript parser,
which is part of the virtual JavaScript engine, to parse the
string, and then executes the code on the virtual JavaScript
interpreter. We need to prevent any part of the string from
feeding into the native JavaScript, CSS, and HTML parsers.
On native browsers, the operations that can cause JavaScrip-
t/CSS/HTML parsing are limited. Therefore, we have to
avoid using all kinds of operations, such as eval, document.write
and so on when implementing our system, so that the na-
tive parsers have no chance to be triggered on the string that
contains the third-party JavaScript code.

The follow-up question is how we can find these opera-
tions that cause native parsing. We use two approaches:
looking up references and looking at the source code of na-
tive browsers. Most browsers have their own references and
many browsers obey certain standards such as DOM, CSS,
and JavaScript. We look at those manuals to figure out
which functions trigger native parsing.

However, those manuals may be erroneous and may be
lacking details. Call graph analysis on the source code of
native browsers is another option. We examine parts of the
call graph in which only functions which call the parse func-
tion will be listed (the functions, which indirectly call the
parse function through other functions, are also included).
We avoid using all of the functions that are direct or in-
direct callers to native parsing when implementing Virtual
Browser.

Cutting off Outflows to the Native JavaScript Parser.
We need to make sure the third-party codes running in

the Virtual Browser cannot leak to the native JavaScript
parser. First, we looked up the JavaScript reference[6] and
verified that only eval and function construction from string,
such as new Function(string) can result in calling the Java-
Script parser. We also did a static call graph analysis of the
WebKit5 JavaScript Core using Doxygen[3].

In WebKit, we found that the following functions could
call the JavaScript parser directly or indirectly. We trace
functions only in the JavaScript Core.

• opcode op call eval. When eval is evaluated, op call eval
is called, and the JavaScript parser is invoked to parse
the parameter of eval.

5Some undocumented and non-standard functions that can
cause parsing may be used in close-source browsers, like
IE, and new features may also be introduced in future ver-
sion of those browsers. However, because we do not even
know those new, undocumented, or non-standard functions,
they are definitely not used in the source codes of Virtual
Browser.

• evaluate. This function is used by JSC (a test module
in the JavaScript Core, not used in real browsers) and
the DOM to parse <script> tag, which is outside the
JavaScript Core.

• constructFunction. It is the function constructor. When
feeding a string into the function constructor, JavaScript
parsing is triggered. It is used by JSEventlistener which
binds a JavaScript function as an event handler for a spe-
cific event, and also is used by JSObjectMakeFunction,
an open API provided by the JavaScript Core.

• functions in JavaScript Debugger. Virtual Browser is not
using debugging mode.

• functions in JavaScript Exception Handling. A JavaScript
string may be reparsed during exception handling in or-
der to get information such as line number, exception id,
etc. In the reparsing function, it will reparse exactly the
same string as before.

• numericCompareFunction. It uses the JavaScript parser
to parse a numeric constant string. Numeric constants
can be considered as safe, so this is not an issue.

Because the code of Virtual Browser uses only the basic
functions in the native JavaScript engine, to avoid using eval
and function construction through string is enough to pre-
vent third-party JavaScripts in Virtual Browser from leaking
out to the native JavaScript parser.

Cutting off Outflows to the Native HTML Parser and
the CSS Parser.

Similar to cutting off flows to the native JavaScript parser
discussed above, we need to make sure that third-party HTML
or CSS do not leak to the native parsers. We found that the
native core JavaScript engine does not call the native HTML
or CSS parsers at all, so we can be sure that the third-party
HTML or CSS is not leaked to the native parsers from Vir-
tual Browser.6

In conclusion, outflows of Virtual Browser are cut off.

4.1.2 Cutting off Inflows of Virtual Browser

Cutting off inflows of Virtual Browser means preventing
the trusted JavaScripts of the web site from accessing the ob-
jects in Virtual Browser directly. Although the JavaScripts
from the web site may not have intentionally malicious be-
havior, it may influence the virtualized browser by mistake.
For virtual DOM, we link data in virtual DOM to an iframe
tag to prevent trusted codes from the web site to access it by
mistake. For other objects, we perform an encapsulation of
the virtualized browser based on the encapsulation of Object
in object-oriented languages. We provide only a limited API
as the interface and put all other variables and objects as
private objects inside Virtual Browser. We also use anony-
mous objects to prevent inheritance and misuse of Virtual
Browser. An example follows.

(function(){ this.evaluate= function (){codes} other codes})();

From the perspective of the native JavaScripts, they can
only see evaluate but no other private objects inside the vir-
tual JavaScript engine. The web developer (writing trusted
scripts owned by the web site) would be required to avoid
overwriting this narrow interface of Virtual Browser.

6Note that functions such as document.write belong to DOM
and not the JavaScript engine.



4.2 Communication through Redirection
In Section 4.2.1, we will discuss data security that makes

sure general data is secured, and script security that is more
complicated to handle. Then, in Section 4.2.2, we give a
detailed analysis on each component of Virtual Browser to
show how data and scripts are flowing.

4.2.1 Data Security

Data security consists of general data security and security
of special data—script.

General Data Security.
Data in our system is classified into two categories: pri-

vate data and shared data. Private data refers to virtu-
alized objects and functions in Virtual Browser, which are
generated by third-party codes. Shared data refers to some
shared objects for communication between the third-party
and the trusted codes. Private data in Virtual Browser is
safe because of encapsulation of our sandbox in Section 4.1.2.
We however need to consider the security of shared objects.
Data in shared objects can be secured in various ways. We
illustrate two methods: mirrored objects and access control.

• Mirrored Object. Some objects, such as String, Date, and
Math are not necessarily shared. We can create a copy of
such an object, which means we turn them into private
data. Below is a simplified example copied from Mozilla
Narcissus JavaScript engine[28].

function String(s) {
s = arguments.length ? "" + s : "";
if (this instanceof String) {

this.value = s;
return this;

}
return s;

}

When third-party scripts try to access a property of String,
third-party scripts are accessing the mirrored String de-
fined in Virtual Browser. Similarly, Object may be mir-
rored to prevent using prototype chain to access the orig-
inal (unique) Object object. Notice that not only Object
is virtualized here but also the whole process of accessing.
Because each time third-party codes call the property pro-
totype, they will go through getValue interface of Virtual
JavaScript engine. Virtual Browser will fetch virtualized
contents for it. So the whole accessing process is secured.

• Access Control. Virtual Browser uses access control to
secure must-share data, which means third-party scripts
can access an object only when they have the right to do
that. There are many existing works about how to facil-
itate communications between different entities, such as
methods in postMessage channel [14], and Object Views
[25]. They employ different policy engines. We can adopt
either of them. Object Views [25], which can also be de-
ployed on Google Caja [20], is a good choice for us.

Script Security.
Scripts are also a special kind of data, but they can be

executed. Execution of third-party scripts outside of the
virtual JavaScript engine may cause the third-party Java-
Script to escalate its privileges. Based on the assumption
about native execution we made earlier, i.e., scripts have to
be parsed before execution, we need to prevent third-party

data from flowing into the native parser. Therefore, our task
is to track flows that might go out of the virtual JavaScript
engine. Scripts in Virtual Browser are classified into two
categories: confirmed scripts and potential scripts.

First, some types of data that we know are JavaScript
codes, such as the data assigned to innerHTML, the pa-
rameter of setTimeout, etc. For this type of scripts, we use
redirection to redirect these kinds of data back into Virtual
Browser. There are two categories.

• Scripts that need immediate execution. For example, when
some JavaScript strings passed to eval, they will be added
to the JavaScript execution queue immediately. When
processing eval, we directly put these codes back into our
system. For example, eval(str) will be interpreted as eval-
uate(str) in which evaluate is part of our system.

• Scripts that need delayed execution. Some scripts’ execu-
tion is triggered by certain events or functions. For ex-
ample, when setTimeout(”alert(1)”,100) is executed, the
code inside will be executed 100 milliseconds later. We
adopt a pseudo-function pointer here. Virtual Browser
first parses scripts and put it into an anonymous func-
tion. In this function, Virtual Browser executes parsed
scripts with correct scope and registers this anonymous
function with events that will trigger the original func-
tion. Therefore, when an event triggers this function
or a function calls this function, this function will ex-
ecute the parsed data inside our system. We still en-
sure third-party scripts are running in the sandbox. For
the aforementioned example, it will look like setTime-
out(function(){execute(parsed node, exe context)},100). We
call this method the pseudo-function pointer method.

Second, we do not know if some data is a script or not.
This data is therefore a potential script. Potential scripts
exist because the trusted JavaScripts running on the na-
tive JavaScript engine, plugins, etc. have higher privileges
and we do not have control over them. They may get data
and execute it as a script, which is the well-known privi-
lege escalation problem. Trusted JavaScripts from the web
site will not intentionally behave maliciously, but they may
unintentionally grant escalated privileges to the third-party
JavaScripts. Next, we will analyze the potential privilege es-
calation possibilities in our system, which can be classified
into three categories.

• Access Shared Object. Trusted JavaScript code may ac-
cess shared objects, which are contaminated by third-
party JavaScript code. Therefore, trusted JavaScript code
might unintentionally grant escalated privileges to a third-
party JavaScript.

• Access Sandbox. Trusted JavaScript codes may access the
sandbox directly. We have already discussed this issue in
Section 4.1.2.

• Access Third-Party JavaScript. Trusted JavaScript code
may want to invoke some third-party JavaScript code.
Because of our encapsulation of Virtual Browser, direct
access is prohibited. However, if a function call is nec-
essary, Virtual Browser can use pseudo-function pointers
discussed earlier to let trusted JavaScript invoke third-
party code while ensuring security at the same time.

Because the last two types of privilege escalation are solved
by encapsulation, only the first one remains. This type of
privilege escalation is not the focus of our paper. We can
leverage the solutions from previous works. Finifter et al.



[19] propose a solution by limiting interface of shared ob-
jects and third-party programs in ADSafe. The interface of
Virtual Browser is similarly designed to be narrow in order
to control the flow.

4.2.2 Security Analysis of Data Flows in Virtual Browser
Components

Now, we discuss the flow of data in Virtual Browser. We
analyze data flows and script flows among three components,
which are the virtual JavaScript engine, the virtual HTML
and CSS parsers.

Securing Data Flows of the Virtual JavaScript Engine.

A narrow interface will help limit data flows and ease data
flow examination. As mentioned in Section 3.1.2, the inter-
face of the virtual JavaScript Engine has three parts: put-
Value, getValue and function call/return. Every flow from
the virtual JavaScript engine needs to go through this inter-
face.

We show all possible data and script flows of the virtual
JavaScript engine in Figure 5. Every flow that goes into the
native JavaScript engine is conservatively considered mali-
cious because we have no control over the native JavaScript
engine. All the flows in Figure 5 are presented below.

• Redirection of Possible Accesses (Flows 1 and 2). Flow
1 exists because JavaScript can generate JavaScript. For
example, eval can execute a string as JavaScript. Flow
2 is caused by the fact that some objects, functions and
properties may lead to HTML, JavaScript, and CSS pars-
ing. For example, the document.write function and in-
nerHTML property cause HTML parsing. The onClick
property causes JavaScript parsing. We use redirection to
redirect these functions to corresponding components in
our system. For example, a modification of innerHTML
in virtual DOM node will use the virtual HTML parser
in Virtual Browser to parse it.

• Privilege Escalation (Flows 4, 5, and 6). Because trusted
JavaScript has higher privileges, privilege escalation can
happen. It can do anything as we mentioned in Section
4.2.1. Flow 4 is to access shared objects. Flow 5 is to ac-
cess third-party JavaScript codes. Flow 6 is to access Vir-
tual Browser itself. Flow 5 is secured by pseudo-function
pointers. Flow 6 is secured by encapsulation. Flow 4 is
hard to secure. We illustrate some methods in Section
4.2.1. In this regard, we are on par with state-of-the-art
approaches, such as ADSafe [1], Web Sandbox [27] and
Google Caja [20].

• Hidden Access to Native Code (Flow 3). Flow 3 is a hid-
den flow. In common cases, JavaScript running on the vir-
tual JavaScript engine cannot access native JavaScripts
and through them access the native JavaScript Engine.
However, the hidden flow can be triggered by two condi-
tions. First, the third-party JavaScripts running on the
virtual engine modify shared objects that belong to flow 7
(part of flow 2). Second, native JavaScripts use a shared
object that belongs to flow 4. We can break either of
these two conditions to prevent this kind of privilege es-
calation. We have discussed how to break the second
condition in Section 4.2.1. We will discuss about cut-
ting the first here. If a mirrored object is used, flow 7
is blocked automatically. If access control mechanism is
used, a write privilege will have to be carefully given to
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a third-party program. Usually, a read privilege is suffi-
cient.

Securing Data Flows of the Virtual HTML and CSS
Parsers.

The interfaces to the virtual HTML and CSS parsers are
narrow. The HTML parser and the CSS parser take a string
as input and give parsed results as an output. The virtual
HTML and CSS parsers can use each other as well as the
virtual JavaScript parser. They do not have other interfaces.

In Figure 6, we show all the possible flows of the virtual
HTML and CSS parsers. We ignore flows that come into the
virtual JavaScript engine because they have already been
discussed.

Flows 2′ and 2′′ are redirected from flow 2 in Figure 5.
Any possible parsing of HTML and CSS is done inside the
sandbox. Flow 8′ and 8′′ are outflows of HTML and CSS
parsers, discussed in Section 4.1.1. Flow 11′ and 11′′ are sim-
ilar to Flow 2 in Figure 5. We use pseudo function pointers
to redirect them to the virtual JavaScript engine (Flows 12′

and 12′′). Other flows are inside our system and do not
cause any security issues. They facilitate communication
among components in Virtual Browser.

5. IMPLEMENTATION
We have implemented a prototype of Virtual Browser.

Our virtualized browser contains a virtual JavaScript parser
and a virtual JavaScript execution engine, a virtual HTML
parser and a virtual CSS parser. We reused and modi-
fied the existing JavaScript implementations of the HTML
parser[32] and the CSS parser[33]. For our JavaScript en-
gine, we modified Mozilla Narcissus metacircular JavaScript
Engine[28], implemented over JavaScript itself. Moreover,
we implemented a simplified version of virtual DOM. Only



basic functionality is supported. For example, we support
innerHTML, outerHTML, innerText, document.write, docu-
ment.writeln and so on in Flow 2′ (Figure 6). As we have
already discussed, if some flows are not introduced, it will
result only in reduced functionality but no security prob-
lems. A production level implementation would also include
other components such as an XML parser.

Except the ECMAScript standard, different browsers may
implement different non-standard features of the JavaScript
language. Our Virtual Browser needs to be compatible with
those non-standard features in order to third-party JavaScripts
that rely on those features. Two methods are used here.
First, we support the standard features and non-standard
features which has been implemented by most browsers. For
example, we support try...catch (e) if exp1 ... if exp2 ...
instead of non-standard try ... catch (e if exp1) ... catch
(e if exp2) .... Second, for important features, we detect
browser vendors and versions when necessary. For exam-
ple, we use ActiveXObject(”Microsoft.XMLHTTP”) in IE
but XMLHttpRequest in other browsers.

At the same time, sometimes, Virtual Browser needs to
provide non-supported features than the underlying native
browser. In this case, we need to mimic those non-supported
features. For example, IE does not support the keyword
const; so we use var and give it a tag if it is a constant to
make it appear like a const.

6. EVALUATION
This section is organized as follows. In Section 6.1, we

evaluate the performance of Virtual Browser prototype, mem-
ory usage, and parsing latency. In Section 6.2, 6.3, and 6.4,
we evaluate Virtual Browser prototype with existing browser
quirks and native JavaScript engine bugs, and completeness
of our prototype.

6.1 Performance Evaluation
We measure the execution speed of Virtual Browser with

mircrobenchmarks and macrobenchmark, and follow with
discussion.

Microbenchmarks.
We compare the execution speed of Virtual Browser and

Microsoft Web Sandbox [27], a state-of-the-art runtime ap-
proach for sandboxing third-party applications. Microsoft
Web Sandbox[27] implemented by Microsoft Live Labs as a
web-level runtime sandbox written in JavaScript. The idea
was derived from BrowserShield[31] project, which rewrites
dynamic web content and inserts runtime security checks.
Web Sandbox has some problems with the virtualization of
local variables7. Therefore, we only use global variables in
our benchmarks for the comparison with Web Sandbox. We

7For example, in the following JavaScript code,
var tempReturn; for (var i = 0;i<10000; i++) tempReturn
= fncTest();
Web Sandbox will rewrite the code as follows.
var tempReturn; for(var i = 0; i < 1e4; i++) h(); tempRe-
turn = j.fncTest()
Web Sandbox does not wrap up i in the above code. To the
best of our knowledge, Web Sandbox tries to avoid wrapping
local variables to improve performance. Local variables are
supposed to be put in their virtualized environment (Vir-
tualizing local variables should be achieved in virtualized
environment but not during virtualized execution). Such re-
laxations are dangerous because it exposes local variables di-

Operations Time
New Game 50ms

Drop a Piece 18ms
Mouse Move 1ms
Game Over 8ms

Figure 7: Delays of Operations in Connect Four

however note that since Virtual Browser virtualizes all vari-
ables, including both global and local, there are no perfor-
mance impacts if we use local variables instead of global
variables in our approach.

Our experiments are performed on Firefox 3.6. The re-
sults of the execution speed of Web Sandbox and Virtual
Browser on JavaScript microbenchmarks is shown in Ta-
ble 2. In this experiment, we measure each important atomic
operation 10K times and report the cumulative delay. Our
system and Web Sandbox achieve nearly the same perfor-
mance. Microbenchmarks 1-4 are some basic JavaScript op-
erations. Virtual Browser is faster than Web Sandbox for
array operations while for arithmetic and functional opera-
tions, the two perform nearly the same. Microbenchmarks
5-7 are object operations and have comparable performance
on these two. Microbenchmarks 8-9 are string operations.
Virtual browser uses mirrored string object which makes it
slightly slower. Microbenchmarks 10-11 are DOM opera-
tions. Because Virtual Browser enforces a check on each el-
ement passed to or returned by DOM functions, it is slightly
slower. Microbenchmark 12 and 13 evaluates the with and
eval statements which are not supported by Web Sandbox.

Macrobenchmark.
We measure Connect Four, a JavaScript game from the

front page of a popular JavaScript game web site [5], which
is listed as the first site by Google search when searching
for JavaScript games. The task of Connect Four is to con-
nect four pieces of the same color. Delays of operations in
Connect Four are shown in Figure 7. Virtual Browser does
not cause any user visible delay. Due to the fact that eval is
used, Connect Four cannot be run on Microsoft Web Sand-
box without modification.

Discussion.
While Virtual Browser is as slow as Web Sandbox, it is

much more secure and complete. Although slowness may
limit applicability of this approach, our system remains well
suited for securing third party JavaScripts. On average, a
single JavaScript operation of a parsed AST tree in our sys-
tem costs 0.03-0.05ms. For a common JavaScript program
without mouse movement events (mouse move events are
equivalent to the heavy animation in the later discussion),
a user may trigger an event every 500ms, which means one
can still write 5000 lines of code (1-2 operations per line).
This is long enough to implement a decent program. For a
heavy animation script, an image may need to be updated
every 50 ms, allowing developers to perform 500 operations
to deal with one event, which is long enough for most usages.
For example, the bounce game in Figure 8 is a medium-sized
game (800 lines of codes). From the user’s perspective, she

rectly to the native JavaScript engine and because the server
and client may have different interpretation of local variables
due to browser quirks as we have already mentioned in Sec-
tion 2.



Operation Web Sandbox Virtual Browser

1. Arithmetic Operation 492ms 480ms
2. Invoke Function 515ms 525ms
3. Populate Array 1019ms 621ms
4. Read Array 1610ms 1217ms

5. Get member on user object 589ms 416ms
6. Set member on user object 566ms 500ms
7. Invoke member on user object 605ms 523ms

8. String Splitting 466ms 532ms
9. String Replacing 475ms 577ms

10. DOM Operation getElementById 707ms 757ms
11. DOM Operation createElement 673ms 822ms

12. With Statement N/A 333ms
13. Eval Statement with Simple String N/A 2867ms

Table 2: 10K Atomic Operations’ Speed Comparison of Web Sandbox and Virtual Browser
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can feel only a little additional delay. Our system will not be
able to support larger animation JavaScripts. However, for
common third-party JavaScripts which do not involve very
frequent events and are also not very large, the comparative
slowness of our system should not pose a problem at all. We
believe the situation is similar to Java and Python being
preferred for some applications than C and C++ owing to
their ease of programming despite their not being efficient
enough. Virtual Browser provides an easy way to handle
all kinds of third-party scripts, even those using complex
and unsafe functions like eval and yet without any security
glitches.

6.1.1 Memory Usage

Figure 8 compares memory usage of third-party Java-
Script applications running in Virtual Browser to that when
they are running in a native browser. We choose third-party
JavaScript games from a popular web site[5]. Connect 4 and
poker are two games with user interaction. Users need to
move and click the mouse to play these games. These two
games’ memory usage with Virtual Browser is about 2%
higher than that without Virtual Browser. Bounce is a game
with substantial animation and user interaction in which the
user can see a ball bouncing in the screen. Bounce takes
about 20% more memory when running in Virtual Browser.
This is because high animation programs require more re-
source from Virtual Browser.

6.1.2 Parsing Latency

We measure parsing latency of the virtual HTML and
JavaScript parsers in Figure 9 and Figure 10 by parsing a
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Figure 9: Latency of JavaScript Parsing

game web site [5] and a JavaScript game, Connect 4 from it.
Both of these parsers are written in JavaScript. In Figure 9,
JavaScript parsing rates decrease slightly when the number
of lines increases (as shown in [9], top-down parsing is a
polynomial time process). As seen in Figure 10, HTML
parsing is faster than JavaScript parsing because JavaScript
language with more types of AST nodes is more complex
than HTML.

The JavaScript parser written in JavaScript is not very
fast. An alternative of this virtual JavaScript parser would
be to pre-parse first-order JavaScript and HTML code at
server side, generate a JavaScript Object (parsing results)
that our execution engine requires, and transmit JSON for-
mat to the client. JSON parsing speed is fast enough at
about 600K/s. However, this may be vulnerable because
the JSON generator at the server side and the JSON parser
at the client side may interpret JSON differently. Due to
the simplicity and well-formatted-ness of the JSON proto-
col, the chance of different interpretations is low; so we can
still consider this approach as an alternative. We still exe-
cute third-party JavaScript on the virtual JavaScript engine
(and not on the native JavaScript engine) and even if we
adopt this alternative, our approach will still be more se-
cure than other runtime approaches.

Unlike first-order JavaScript, high-order JavaScript and
HTML (generated by scripts dynamically), like the scripts
introduced by innerHTML and document.write, have to be
parsed in the parser written in JavaScript. Compared to
first-order JavaScript, the amount of these kinds of codes is
relatively small. Thus, using our parser will not introduce
too much delay and the JSON approach remains viable.
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6.2 Browser Quirks Compatibility
Since we parse scripts only once at the virtual JavaScript

engine, and do not rely on the native parsers, we are not vul-
nerable to browser quirks. Additionally, scripts cannot leak
from our system to the native JavaScript engine. We evalu-
ate our system with 113 browser quirks’ examples listed in
the XSS Cheat Sheet [11]. The XSS Cheat Sheet contains
mostly examples of XSS attacks that are caused by browser
quirks. The results show that none of the 113 browser quirks
lets third-party JavaScript codes bypass the virtual Java-
Script engine, regardless whether the language features are
supported by Virtual Browser.

6.3 Robustness to Unknown Native JavaScript
Engine Bugs

We evaluate the robustness of Virtual Browser to un-
known native JavaScript engine bugs. In this experiment,
we use an old version (before 2009) of Firefox. All the bugs
(14 in totals) recorded in CVE [2] related to SpiderMonkey
JavaScript engine in the year of 2010 and 2009 are evalu-
ated. The results are the same as we discussed in Section
2. Running of example exploits in the database does not
trigger those vulnerabilities in Virtual Browser.

Furthermore, our implementation of Virtual Browser does
not satisfy the preconditions for triggering any of those vul-
nerabilities. We illustrate three as examples. Others are
similar.

• CVE-2010-0165: Native eval is required to trigger this
vulnerability. Virtual browser source code does not use
native eval statement.

• CVE-2009-2466: The vulnerability is triggered by the
statement with(document.all){}. Virtual browser source
code does not use with statement.

• CVE-2009-1833: The prototype of an object is set to
be null inside the prototype function. Virtual browser
source code does not use prototype in this way.

6.3.1 Discussion

How does Virtual Browser deal with bugs in Vir-
tual JavaScript engine? The experiment of this section
is performed to prove the hardness of circumventing vir-
tual JavaScript engine to exploit native JavaScript engine.
The security of virtual engine is fully analyzed in Section
4. Moreover, virtual JavaScript engine of Virtual browser
is written in JavaScript, a type safe language that does not
have vulnerabilities like buffer overflow in native JavaScript
engine.
Where does the robustness come from? Virtual Browser
is implemented by a type safe language, which gradually re-

duces the number of possible vulnerabilities. However, the
enhanced security does not only come from type safe lan-
guage but also the virtualization technique.

Browser virtualization adds another layer that increases
security assurance. In particular, Virtual Browser utilizes
virtualization to isolate JavaScript codes. Attackers need
to break Virtual Browser first and then native browser to
steal information. Similar to a virtual machine that has
higher security assurance than other native sandboxes, Vir-
tual Browser with another virtualization layer has its advan-
tages.

6.4 Completeness of Virtual Browser Imple-
mentation

We evaluate the completeness of our prototype of Virtual
Browser in order to show that our other experimental results
are convincing. We use test cases of ECMA-262 Edition 1
from Mozilla [7]. The results show that we can pass 96% of
the test cases. For some categories, such as JavaScript State-
ment, String, Expressions, Types, etc., we can pass 100% of
the test cases. The worst of all is Object Objects, for which
we can only pass 72% test cases. The incomplete implemen-
tation will only affect the functionality of Virtual Browser
but not the security of Virtual Browser because we intro-
duce the data flows after isolation. Security is always the
most important concern in Virtual Browser.

When we are trying to run the same test in Web Sandbox
[27], Web Sandbox cannot even run the test itself because
Web Sandbox does not have full support of eval. However,
eval is required in the driver of these test cases. This also
proves the importance of eval without which we cannot per-
form the tests. Therefore, we have to give up running the
test for Web Sandbox. Our manual check shows that they
do not have complete implementation either.

7. CONCLUSIONS
In this paper, we propose the concept of browser virtu-

alization, and we designed and implemented a prototype
of Virtual Browser in JavaScript. With Virtual Browser,
we allow unmodified full-featured third-party JavaScripts to
run on Virtual Browser and enforce secure constraints on
its privileges and communication with the JavaScripts from
the web site. In our design, we first build an isolated virtual
browser layer without any possible communication channel
with the native browser resources and with the JavaScript
from the web site. Then, we introduce the necessary data
flows explicitly. Compared with existing efforts with simi-
lar goal, such as Web Sandbox, our scheme can allow full-
featured JavaScript execution instead of limiting a subset of
JavaScript functionalities. Fundamentally, it is much eas-
ier for any unmodified third-party JavaScript code to run
on our scheme directly. Performance evaluation shows our
prototype has a similar performance as Web Sandbox.
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