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ABSTRACT
Application containers, such as Docker containers, are light-weight
virtualization environments that “contain” applications together
with their resources and configuration information. While they
are becoming increasingly popular as a method for agile software
deployment, current techniques for preparing containers add un-
necessary bloat into them: they often include unneeded files that
increase the container size by several orders of magnitude. This not
only leads to storage and network transfer issues but also security
concerns. The problem is well-recognized but available solutions
are mostly ad-hoc and not largely deployed.

Our previous work, Cimplifier, on debloating containers uses
dynamic analysis to identify the resources necessary to a container
and then debloat it. However, the dynamic analysis uses model exe-
cutions or test runs, which if incomplete, may not allow detection
of all the necessary resources. Therefore, it is important to explore
other directions towards container debloating. In this paper, we
discuss two of them: a new intermediate representation allowing
incorporation of multiple techniques, such as dynamic analysis and
static analysis, for debloating; and test case augmentation using
symbolic execution.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→ Software maintenance tools;
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1 INTRODUCTION
Application containers are a light-weight virtualization technology
that contain applications together with the resources and configu-
ration necessary to run them. Recent projects such as Docker [17]
have popularized containers as an agile method for application
deployment. In fact, containers have made accessible the microser-
vices deployment paradigmwhere an application consists of several
independently operating, loosely coupled components, enabling
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easy management of each component independent of other com-
ponents. With all these benefits application containers continue to
see an upward trend of adoption [15, 47].

The current container ecosystem does have its limitations. For
usability, container images are often built as layers upon other
container images. The underlying layers as well as the process of
making the images often amasses many resources (programs, files,
etc.) unnecessary for running the application within the container.
With Docker container images frequently going over a gigabyte,
the resulting bloat in containers has several undesirable outcomes:

(1) Containers images are bulky and consume not only huge disk
space for storage but also, and more importantly, network
bandwidth for transfers. Developers often develop container
images locally and then test and deploy them on the cloud.
With huge images network transfers can easily become a
time and cost bottleneck.

(2) Incorporating unnecessary files in a container only serves to
escalate the possibility of further harm in the event of a com-
promise. Keeping unnecessary files around an application
goes against the principle of least privilege [26, 35], a best-
practice security principle, which dictates that any module
(an application, process, etc.) should be given only privileges
that are necessary to perform its functionality. Indeed, high-
profile vulnerabilities like Shellshock (CVE-2014-62711) and
ImageTragick (CVE-2016-3714) can be mitigated to various
extents by removing unnecessary files.

(3) In the event of a vulnerability advisory report in a compo-
nent incorporated into the container, the whole container
must be updated even if the application does not use this
component, thus increasing the administration burden of the
container. This is because it is often hard to ascertain that the
application does not actually use the vulnerable component.
Maintaining a simple web app container, for example, may
therefore necessitate tracking the vulnerability advisories for
the entire operating system distribution (currently, container
images are typically built on top of a Linux distribution, e.g.,
Debian, image layer).

Image layers are suggested as a solution to large container sizes [24].
Proponents argue that a bulky image layer can be shared across
all of a developer’s container images and hence the cost of the
bulkiness is amortized.2 But layers still do not solve the security
issues (items (2) and (3) above) that accompany bloated container
images. Furthermore, image layers and the engineering technology
to support them (such as OverlayFS) have themselves been called a

1Vulnerabilities with CVE identifiers are described on https://web.nvd.nist.gov
2Overlay file systems are used to overlay one image layer on top of another in a cont-
ainer instance. Such layering allows lower-level layers to be shared across container
images.
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misfeature by some [1] as they increase the complexity of creating
and managing container images.

Numerous articles and blog posts have discussed the issue of
bloated container images [1, 16, 19, 46]. Attempts to remedy them,
however, have mostly been ad-hoc and do not work for a large class
of containers (see Section 6). Our previous work, Cimplifier [33],
shows that the task for debloating containers systematically is com-
plex. While our previous work used dynamic analysis to identify
resources that are actually used in a container, it is possible to
use other techniques such as static analysis or symbolic execution
for the same purpose. We therefore explore future directions for
enlisting such techniques for debloating. We first propose a new
intermediate representation that can serve as a target for all these
analysis techniques and which can subsequently be used to debloat
containers. This intermediate representation allows us to build a
framework for debloating where different analysis techniques can
be “plugged-in” without needing to re-invent the common parts
of the framework. We next propose test case augmentation using
symbolic execution as a means to enhance dynamic analysis test
case coverage, which has been a limitation in Cimplifier. We begin
with the relevant background and discussion on Cimplifier and
then describe our proposed future directions.

2 BACKGROUND
Containers. Containers are user-space instances that share the

same OS kernel. The Linux kernel implements namespaces to pro-
vide user-space instantiations. A namespace is an abstraction around
a global resource giving the processes within the namespace the
illusion of an isolated instance of the resource. Seven kinds of
namespaces are defined in Linux: IPC (inter-process communica-
tion), network, mount, PID (process identifier), user, UTS (Unix
timesharing system, allowing separation of hostnames), and cgroup
(described below).

Container implementations in Linux, such as LXC [30] and Do-
cker, employ the namespaces feature to provide a self-contained
isolated environment: resources that do not have a name in a names-
pace cannot be accessed from within that namespace. In addition,
container implementations use cgroups, another Linux kernel fea-
ture allowing for resource limiting, prioritization, and accounting.
Finally, Linux capabilities and mandatory access control (MAC)
systems, such as SELinux or AppArmor, are often used to harden
the basic namespace-based sandboxing [18].

Besides the implementation of a container itself (using the above
kernel primitives), projects such as Docker developed specifica-
tions and tools to implement and deploy containers. For example,
the files necessary for running applications (the application code,
libraries, operating system middleware services, and resources),
packed in one or more archives together with the necessary meta-
data, constitute a container image. The image metadata include
various configuration parameters, such as environment variables,
to be supplied to a running container, and network ports that should
be exposed to the host.

Systems like Docker are designed particularly to deploy appli-
cations, e.g., web servers, and hence are meant to run application
containers as opposed to OS containers. In this regard, a contai-
ner may be viewed as an application packed together with all the

necessary resources (such as files) executing in an appropriate en-
vironment. The focus of this work is such application containers,
henceforth referred to as simply containers.

Vulnerabilities due to bloating. As a motivation to container de-
bloating, we present some example vulnerabilities whose exploita-
tion can be prevented by debloating. We first consider CVE-2016-
3714, which is an ImageMagick vulnerability that allows arbitrary
code execution and information disclosure (of any file readable by
the current user) through specially crafted images. By limiting Im-
ageMagick in its own container and providing minimal resources,
information disclosure is confined to just the files that actually
need to be accessed by ImageMagick. Furthermore, the arbitrary
code execution happens through shell command injection. If, how-
ever, the ImageMagick container does not have a shell nor any
other executables, arbitrary code execution is reduced to applica-
tion crash at worst. Such isolation of ImageMagick can also reduce
possible harm from numerous other vulnerabilities in ImageMag-
ick such as CVE-2016-3715,16,17 (delete, move, and read arbitrary
files), CVE-2016-4562,63,64 (buffer overflow with unspecified im-
pact), and CVE-2016-5118 (arbitrary shell command execution).
Note that ImageMagick is used by a variety of web applications
such as Mediawiki and Wordpress. Proper sandboxing and debloat-
ing around Imagemagick can prevent the exploitation of these web
applications.

Note that some of the above vulnerabilities in Imagemagick fall
under the category of arbitrary command execution (herein referred
to as ACE), whose impact can generally be reduced by minimiz-
ing the commands available to the attacker. Shellshock, a family
of critical vulnerabilities (CVE-2014-6271 and related bugs) in the
Unix Bash shell, allows the execution of arbitrary shell commands
encoded in environment variables. These and similar recent vul-
nerabilities in other software, e.g., CVE-2015-7611 (ACE in Apache
James server), CVE-2014-8517 (ACE in tnftp FTP server), CVE-2014-
7817 (ACE in glibc), can all be mitigated to various extents by
limiting the available resources.

Considering another example, if a user prepared a container
with sudo and mistakenly made it accessible from a web-facing
application or if the version of sudo is vulnerable (e.g., CVE-2014-
0106 andCVE-2012-0809), debloating canmitigate the risk by simply
removing sudo if it will not be executed in a deployed container.
Note that the former case is a mis-configuration rather than a
vulnerability in an application component. Debloating can thus
also lower the impact of misconfiguration.

3 CIMPLIFIER
As discussed earlier, bloated containers are bad for several reasons.
In our previous work [33], we worked with the following ideal: a
container should run only one simple application task and should pack
only as many resources as needed to fulfill its functionality require-
ment. We presented the design and implementation of Cimplifier
(pronounced simplifier) as a step towards automatically realizing
this ideal. Cimplifier accepts a container and simple, succinct user-
defined constraints specifying which executable programs should
or should not be run in the same container. We used dynamic
analysis to understand how resources are used by the application
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Figure 1: Architecture overview of Cimplifier. It analyzes system calls frommodel executions of the input container to identify
resources. The application together with these resources is then partitioned across several containers guided by a user-defined
policy. These containers function together through remote process execution (RPE), which acts as a glue among them.

executables in the container and based on the results, partition the
container while satisfying the constraints.

Given a container, our work debloats and partitions it at the level
of application executables so an executable binary is one atomic
unit that can be placed in a partition. Debloating and partitioning
at granularities finer than executables is not within the scope of
Cimplifier but may be achieved by combining our work with other
works on program slicing and privilege separation [6, 12, 14, 41, 44,
48].

Container debloating partitioning poses three technical chal-
lenges (A) How do we identify which resources are necessary for
a container? (B) How do we determine container partitions and
associate resources with them? (C) How do we glue the partitions
so that together they provide the same functionality as the original
container?

Our approach utilizes dynamic analysis to gather information
about the containerized application’s behavior and functionality.
We collect detailed logs from executions of a given container. We
use these logs to construct resource sets for different component ex-
ecutables. Based on flexible, pluggable policies, we determine cont-
ainer partitions. The resulting containers are populated with the
resources needed for correct functioning of the executables. Cont-
ainer mechanisms themselves provide for separation of resources.
Based on the resource sets identified, we relax this separation to
share some resources across containers on an as-needed basis. Fi-
nally, we introduce a new primitive called remote process execution
(RPE) to glue different containers. It relies on the availability of a
shared kernel to allow a process to transparently execute a program
in a different container. Our approach is depicted in Figure 1.

While our approach uses dynamic analysis, debloating and par-
titioning may also be possible through static analysis. Both ap-
proaches have their advantages and disadvantages. In dynamic
analysis, resource set identification may not be accurate if code cov-
erage during container executions is not complete. Static analysis
does not suffer from this limitation, but faces significant challenges
in our context: in typical containers that we studied, application
components are written in several languages (e.g., shell script, PHP,
and compiled C and C++), the application is strewn across multiple
shared object libraries and executables, and the content of the envi-
ronment variables and configuration files dictate an application’s
runtime behavior. In this first step towards container debloating,
our dynamic analysis, instead, stays on the simple, well-defined
system call interface and is more manageable than static analysis.
Because of the limitations of dynamic analysis, it is important to

explore other options such as static analysis where possible. This
paper is essentially an exploration of some ideas in this space: for
example, we propose an intermediate representation, which can be
a target for both static analysis and dynamic analysis.

Our evaluation of Cimplifier showed that it succeeds in be-
bloating real-world containers while preserving their functionality.
In fact, debloating can result in reducing container sizes by up
to 95%. This is promising and validates our hypothesis that real-
world containers are significantly bloated. Furthermore, with the
dynamic analysis approach that Cimplifier adopts, it is able to
debloat containers in under thirty seconds while resulting in no
runtime overhead for debloating and negligible overhead for par-
titioning for the resulting containers. Table 1 shows results from
some of the containers we debloated.

We next discuss some directions that we have been exploring to
improve the state-of-the-art in container debloating.

4 AN INTERMEDIATE REPRESENTATION
FOR CONTAINER DEBLOATING

Recall that container debloating requires identifying the resources
(programs, libraries, configuration files, and network resources)
that are necessary to run the containerized application in a specific
configuration. The resources that are not necessary can then be
removed to obtain a debloated container. Cimplifier used dynamic
analysis to identify the necessary resources. As described earlier,
dynamic analysis has the advantage of working across multiple
language and runtime stacks, being scalable for large applications,
and being specific to a particular configuration the application is
intended to run in. It does have its limitations though: in particular,
the analysis is only as good as the coverage that model executions
of the container provide. If some otherwise necessary resources are
not accessed during these model executions or test runs, Cimplifier
would eliminate them. This would lead the container to behave
unexpectedly in deployment when those resources are accessed.

It is therefore worthwhile examining static analysis to solve the
coverage issue of dynamic analysis. Static analysis can often be
done soundly and so would not miss resources that would have
been missed by the limited test runs in dynamic analysis but are
otherwise necessary for the containerized application.

Since both dynamic analysis and static analysis would work to-
ward the same goal, container debloating, it is best to abstract out
the common part of this analysis. We envision that both dynamic



Table 1: Containers studied.

Container Size Analysis time Result size Size reduction

nginx 133 MB 5.5 s 6 MB 95%
redis 151 MB 5.5 s 12 MB 92%
mongo 317 MB 14.0 s 46 MB 85%
python 119 MB 5.3 s 30 MB 75%
registry 33 MB 2.9 s 28 MB 15%
haproxy 137 MB 4.3 s 10 MB 93%
appcontainers/mediawiki 576 MB 16.8 s 244 MB 58%
eugeneware/docker-wordpress-nginx 602 MB 16.2 s 207 MB 66%
sebp/elk 985 MB 26.1 s 251 MB 75%

Each row specifies the container identifier on Docker Hub, the container image size, the Cimplifier analysis time, the combined size of
output containers, and the percentage reduction in size. The containers produced by Cimplifier are functionally identical to the original

containers.

analysis and static analysis can target a common intermediate rep-
resentation (IR), which can then be processed to debloat the given
container.

4.1 IR Design
We now discuss the design of our IR. Note that we specifically leave
out certain details as these will likely change as we implement
the IR. A crucial consideration in the IR design is that it should
contain details at the level which prevent duplication of code at the
IR sources (such as static analysis and dynamic analysis).

Abstractly, the IR is a sequence of records. Each record repre-
sents a change of state on the runtime system. For example, it may
represent opening of a file, or changing of a directory. In dynamic
analysis, these records are abstracted system calls. For static anal-
ysis they can represent abstractions of either raw system calls or
library calls, which affect the system state in a specific way. An
abstraction over a system call or library call describes the effect of
the call on the state of the system rather while ignoring irrelevant
details. For instance, the open, openat, and creat system calls can
be used to open files with the same semantics when supplied certain
flags. As another example, C on POSIX systems provides several
library functions to execute another program, including the exec
family of functions and the system function. For the purpose of
debloating it is only important to record the file name correspond-
ing to the executed program. The IR sources (i.e., dynamic or static
analysis) would derive this file name and record it.

With the above context, a record is a tuple ⟨i, c, r ,w⟩, where i
is the thread that executed the system call or library call corre-
sponding to this record; c is the type of the call (incorporating
the abstractions described in the above paragraph); r is the set of
resources read during this call; and w is the set of resources cre-
ated, written to, or modified (including modification of metadata)
during this call. While dynamic analysis can use the thread ID of a
thread as i , a static analysis can use a virtual thread ID as i . This
virtual thread ID may correspond to one or more threads during
runtime. Note that read and written resources may also be defined
for non-file resources such as network and IPC resources – these
resources are placed in both the sets.

Note that in a multi-threaded program, the order of records may
not be well-defined (multiple records may execute concurrently).

Under this situation, the records can be ordered in any arbitrary,
feasible way. Arbitrary ordering works because if it doesn’t a pro-
gram is actually violating mutual exclusion or such other properties
and the results of the program will be non-deterministic, depending
on the order of execution of threads.

4.2 Processing the IR
We now briefly outline how the IR may be processed to obtain de-
bloated containers. The IR records precisely identify the operations
on various resources and associate them with threads. Threads
together with the operations on them can be used to identify the
executable programs running in those threads.

The resources read from or written to are the ones to be con-
sidered for placing into the debloated containers. A dependency
analysis ensures that the resources on which the resources identi-
fied from the IR records depend are also put into consideration for
adding to debloated containers. For instance, when a file read from
or written to, all the ancestor directories must also exist. Similarly,
an analysis of symbolic links must be performed to make sure the
actual resources the links link to are also included.

If multiple containers are being prepared from a single container,
as in partitioning, resources should be associated with different
executables, which may then be placed in one or more containers.

4.3 Other Considerations
We discuss a few other considerations that can influence the design
and utility of our intermediate representation.

Other sources and use cases. While we consider only static analy-
sis and dynamic analysis as the potential sources of the IR above, it
may be possible to add other sources. For example, symbolic execu-
tion could be directly used to infer the resources accessed (this use
of symbolic execution would not require the additional dynamic
analysis step as described in the next section) and could therefore
be a potential IR source. Moreover, it is possible to use the IR to
solve problems other than container debloating. For example, the IR
could easily be used to perform container partitioning as was done
in Cimplifier, and may also be used to write sandboxing policies
in AppArmor (a mandatory access control system on Linux). Care



should therefore be taken to design an IR that allows extensibility
and accommodating these use cases.

Granularity. The IR as described above is geared towards re-
moving unnecessary resources from bloated containers. That is, it
works at the level of resources. It is however possible to additionally
remove code from executables that is not necessary in the given
container configuration. This would require an IR that incorporates
information at a granularity finer than the file-level. For example, it
may be possible to incorporate information about which functions
are executed in dynamic analysis or are reachable in static analysis
and then prune the other functions.

5 TEST CASE AUGMENTATION
Cimplifier uses dynamic analysis to identify the system resources
used by application executables but the effectiveness of the analysis
depends on the coverage that the test runs provide. If test runs
are incomplete, we may miss out on important resources while
debloating leading to unexpected and unwelcome effects under
deployment. The previous section discussed incorporating static
analysis and symbolic execution into the debloating framework. In
this section we discuss in detail how we can use symbolic execution
to enhance improve on test case coverage.

Symbolic execution is an analysis technique that explores multi-
ple paths of a program code. It generates all possible values that the
program variables can take by assigning symbolic values to them
instead of concrete values [20]. However, the number of all possible
control paths in a program can be exponentially large. A standard
variation used to limit space, execution time and constraint com-
plexity is concolic execution [2]. It is a combination of concrete and
symbolic execution. In concolic execution, only certain variables are
chosen and marked as symbolic and other variables in the program
are assigned concrete values.

Manual and random testing approaches for debugging real world
software applications can be difficult. Also, errors like functional
correctness bugs cannot be easily detected without execution of
the code [9]. Therefore, symbolic execution and its variants are
increasingly being used to automatically generate test inputs for
debugging software applications. Apart from debugging software
applications, the process of automatic test case generation to in-
crease path coverage in code can also be utilized for purposes such
as identifying the set of system resources required by the program
during its execution as in the case of Cimplifier.

Many tools have been developed for symbolic execution (see Sec-
tion 6), but only a few are publicly available and work for real-world
programs. KLEE is one such popular tool and supports symbolic
execution for C. The following features of KLEE have contributed
to its popularity.

(a) KLEE strikes a functional balance between the concrete and
symbolic approaches for interaction of the code with the
external environment during its execution. The concrete ap-
proach captures exactly what the code does during execution
whereas the symbolic approach captures all the potentially
possible behaviors during execution.

(b) The risk of exponential path explosion is mitigated in KLEE
by using strategic search techniques such as random path
selection and coverage-optimized search.

(c) KLEE also uses a number of query optimization techniques
before transferring the queries to the constraint solver. These
include expression rewriting, constraint set simplification,
implied value concretization and counter-example cache [9].

Recall that Cimplifier uses model executions or test runs for its
dynamic analysis. In the Cimplifier paper, we used test cases pro-
vided by the applications and those that we ourselves developed for
driving dynamic analysis. However, it is likely that human-created
test cases are far from complete. KLEE can be first used to gener-
ate a more comprehensive set of test cases and then Cimplifier’s
dynamic analysis can be invoked on these generated test cases to
increase the accuracy of the set of required system resources identi-
fied. The output trace files would then contain the log of additional
system calls made by pieces of code that were earlier not executed.
This process of test case augmentation reduces to a great extent
the possibility of essential system resources being eliminated in the
process of container slimming. Moreover, the integration of KLEE
with the Cimplifier code does not require any changes to be made
to the existing Cimplifier code. Therefore, it is a clean solution.
However, choosing symbolic inputs so as to achieve maximum path
coverage and at the same time mitigate the problem of exponential
path explosion is a challenge. This can be solved by using data and
control dependencies in the code to divide inputs into mutually ex-
clusive blocks so that each such block can be executed symbolically
while concretely executing the other blocks. This provides the same
result as symbolically executing the entire input set. Apart from
this, we could also use static analysis of the code structure, formal
methods, hints from developers and dynamic execution traces to
choose symbolic inputs.

6 RELATEDWORK
Some blog posts and projects have developed automatic container
debloating as a solution to the big size of Docker images. All these
works [4, 27, 32] perform an ad-hoc analysis with techniques such
as fanotify, falling short of recording system events like creation
and moving of files. Cimplifier [33] is the most systematic work
to date in this space but still suffers from the issue of test coverage
in dynamic analysis as described in Section 3.

In the past, many symbolic execution tools have been devel-
oped. These include KLEE [9], CUTE [38], DART [21], jCUTE [36],
SAGE [22], BitBlaze [42], CREST [8], PEX [43], Rubyx [11], Java
PathFinder [31], Otter [34], BAP [5], Cloud9 [7], Mayhem [10], Sym-
Droid [25], S2E [13], Jalangi [37], Pathgrind [39], Kite [45], SymJS
[28], CIVL [40], KeY [23], PyExZ3 [3], JDart [29]. Many of these
tools use some combination of symbolic and concrete executions
[2] (also called concolic execution). While Cimplifier could use
many of these tools that provide concolic execution, we choose to
work with KLEE due to its being open source and its innovative
features as discussed in Section 5.

7 CONCLUSION
Application containers are becoming increasingly prevalent as a
means for software deployment but continue to remain bloated
with resources that are unnecessary for their execution. Our previ-
ous work, Cimplifier, was a first step in the space of debloating



containers. In this paper, we explored future directions for debloat-
ing. In particular, we discussed a new intermediate representation
for different techniques targeted towards container debloating and
test case augmentation using symbolic execution to improve test
case coverage for dynamic analysis.
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