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Abstract—Mobile users are increasingly becoming targets of malware infections and scams. In order to curb such attacks it is important
to know how these attacks originate. We take a previously unexplored step in this direction. Numerous in-app advertisements work at this
interface: when the user taps on the advertisement, she is led to a web page which may further redirect until the user reaches the final
destination. Even though the original applications may not be malicious, the Web destinations that the user visits could play an important
role in propagating attacks.
We develop a systematic static analysis methodology to find ad libraries embed in applications and dynamic analysis methodology
consisting of three components related to triggering web links, detecting malware and scam campaigns, and determining the provenance
of such campaigns reaching the user. Our static analysis system identified 242 different ad libraries and dynamic analysis system was
deployed for a two-month period and analyzed over 600,000 applications while triggering a total of about 1.5 million links in applications
to the Web. We gain a general understanding of attacks through the app-web interface and make several interesting findings including a
rogue antivirus scam, free iPad scams, and advertisements propagating SMS trojans.
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1 INTRODUCTION

Android is the predominant mobile operating system with
about 80% worldwide market share [1]. At the same time,
Android also tops among mobile operating system in terms
of malware infections [2]. Part of the reason for this is the
open nature of the Android ecosystem, which permits users
to install applications for unverified sources. This means that
users can install applications from third-party app stores
that go through no manual review or integrity violation.
This leads to easy propagation of malware. In addition,
industry researchers are reporting [3] that some scams which
traditionally target desktop users, such as ransomware and
phishing, are also gaining ground on mobile devices.

In order to curb Android malware and scams, it is
important to understand how attackers reach users. While
a significant amount of research effort has been spent ana-
lyzing the malicious applications themselves, an important,
yet unexplored vector of malware propagation is benign,
legitimate applications that lead users to websites hosting
malicious applications. We call this the app-web interface. In
some cases this occurs through web links embedded directly
in applications, but in other cases the malicious links are
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visited via the landing pages of advertisements coming from
ad networks.

A solution directed towards analyzing and understanding
this malware propagation vector will have three components:
triggering (or exploring) the application UI and following
any reachable web links; detection of malicious content;
and collecting provenance information, i.e., how malicious
content was reached. There has been some related research
in the context of Web to study so-called malvertising or
malicious advertising [4], [5]. The context of the problem
here is broader and the problem itself requires different
solutions to triggering and detection to deal with aspects
specific to mobile platforms (such as complicated UI and
trojans being the primary kinds of malware).

In order to better analyze and understand attacks through
app-web interfaces, we have developed an analysis frame-
work to explore web links reachable from an application
and detect any malicious activity. We dynamically analyze
applications by exercising their UI automatically and visiting
and recording any web links that are triggered. We have used
this framework to analyze 600,000 applications, gathering
about 1.5 million URLs, which we then further analyzed
using established URL blacklists and anti-virus systems
to identify malicious websites and applications that are
downloadable from such websites. We need to mention
that we could not trigger ads or links in about 5/6th of
the applications. Note that many applications do not have
any ad libraries (we can statically check for this) but still
have to be run as there may be other kinds of links present.
To give an example, for a run of 200K applications in China,
we obtained 400K chains with 770K URLs. However, there
are only 30K unique applications and 180K unique URLs.
The other applications either do not have any ads or links or,
in some cases, we may not have been able to trigger those



ads or links. Our methodology enables us to explore the Web
that is reachable from within mobile applications, something
that is not possible for traditional search engines and website
blacklist systems such as Google Safebrowsing. We are not
aware of any previous work that enables this.

We make the following contributions.

• We have developed a framework for analyzing the
app-web interfaces in Android applications. We i-
dentify three features for a successful methodology:
triggering of the app-web interfaces, detection of ma-
licious content, and provenance to identify the respon-
sible parties. We incorporate appropriate solutions for
the above features and have implemented a robust
system to automatically analyze app-web interfaces.
The system is capable of continuous operation with
little human intervention.

• As part of our triggering app-web interfaces, we
developed a novel technique to interact with UI
widgets whose internals do not appear in the GUI
hierarchy. We develop a computer graphics-based
algorithm to find clickable elements inside such
widgets.

• We deployed our system for a period of two months
in two locations, one in North America and another
in China. We studied over 600,000 applications from
Google Play and four Chinese stores for a period of
two months and identified hundreds of malicious files
and other scam campaigns. We present a number of
interesting findings and case studies in an attempt to
characterize the malware and scam landscape that can
be found at the app-web interface. As some examples,
we have found rogue ad networks propagating rogue
applications; scams enticing users by claiming to give
away free products propagating through both in-app
advertisements and links embedded in applications;
and dangerous SMS trojans propagating through well-
known ad networks.

• In order to assist with determining the provenance
of the identified malicious links, we conducted a
systematic study to associate ad networks with ad
library packages in existing applications. We apply
the MinHash [6] and LSH [7] techniques to greatly
improve the efficiency. The system is also incremental,
allowing new apps to be analyzed on demand. Our
study reveals 242 ad networks and their associated
ad library packages. To the best of our knowledge,
this is the largest number of ad libraries identified.
We also analyze the popularity of the applications to
help us understand the distribution of ad libraries in
the markets.

The manuscript extends our conference version [8] in
the following important ways: (a)We apply the MinHash [6]
and LSH [7] techniques to greatly improve the efficiency of
finding ad libraries system. This demonstrates the scalability
of the approach, even when applied to a large number
of applications. We found 40 new ad libraries in 300,000
applications. The system is also incremental, allowing new
apps to be analyzed on demand(Section 3). (b)We add the
popularity part to help us know about the ad libraries
distribution of markets.

In our findings, we have detected both applications
embedding links leading to malicious content as well as
advertisements that are malicious. We note that the two
cases are different in terms of which party is to blame:
the application developer, or others like the advertisement
networks. Our results indicate that in both cases, the users
can be offered better protection on the Android ecosystem
by screening out offending applications that embed links
leading to malicious content as well as making ad networks
more accountable for their ad content.

The rest of this paper is organized as follows. Section 2
presents the necessary background. Our methodology is
presented in Section 4 while Section 5 discusses implementa-
tion details. Section 6 and 6.6 presents our results and some
interesting findings characterizing the studied malware and
scam landscape. Related work is presented in Section 7.
Finally, we conclude in Section 8.

2 BACKGROUND

In this section we provide the necessary context in which our
system and study fits as well as some details which led to
important decisions in our methodology.

2.1 Android Ecosystem

Android is a dominant mobile operating system. The core
operating system is developed primarily by Google and
is used by many device vendors as the platform for their
devices. Apart from system applications, Android also allows
running third-party applications, which serve to enrich the
functionality of user’s devices.

Application stores serve as the primary venue for the
users to find and install applications. Google maintains
the official Android application store, called Google Play.
However, there also exist other application stores. In some
countries, such as China, Google services are not as popular
and so the unofficial stores serve as the primary method of
application distribution. Most devices and vendors allow
application installation from unofficial sources, including
third-party application stores and web links.

Apart from the discovery mechanisms built into the
application stores, users may also discover applications
through advertisements in other applications. These adver-
tisements may be served through ad networks or may be
directly embedded by the application developers without
the involvement of intermediary ad networks. Furthermore,
in some cases applications may include direct web links (i.e.,
not affiliated with any application store).

2.2 Advertising

In-app advertisements are a significant source of revenue
for application developers, and as such form a significant
portion of app-web interaction on mobile devices. As an
ad-supported application runs, it shows advertisements
from various ad networks. Advertisements take a variety
of forms ranging from banners at top or bottom area of
the screen, whole-screen interstitials during switching of
activities (roughly equivalent to windows) in the application,
and as system notifications.
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In the context of mobile advertising, the advertisers are
parties who wish to advertise their products, the publishers
are mobile applications (or their developers) that bring
advertisements to the users. Ad networks or aggregators
link the publishers to the advertisers, being paid by the
latter and paying the former. Ad networks themselves may
have complex relationships with each other; Applications
with advertisements em bed some code from ad networks.
This code provides the glue between the ad network and
the publisher. It is responsible for managing and serving
advertisements and is called ad library. Each ad library may
be attributed to an ad network. Clicking on advertisements
may lead users to content on Google Play or to web links.
This often happens through a chain of several web page
redirections. We generally refer to all these URLs in these
web page redirections as the redirection chain and the final
web page as the landing page. Ad networks themselves may
participate in complex relationships with each other. Certain
parties, which may be ad networks themselves, run so-called
ad exchanges where a given ad space is auctioned among
several bidding ad networks so as to maximize profits for the
publishers. Ad networks also have syndication relationships
with each other: an ad network assigned to fill a given ad
space may delegate that space to another network. Such
delegation can happen multiple times through a chain of ad
networks and is visible in the redirection chains.

Applications with advertisements embed some code from
ad networks. This code provides the glue between the ad
network and the publisher. It is responsible for managing
and serving advertisements and is called ad library.

2.3 Android Malware

Among the mobile operating systems, Android is particularly
troubled by malware. Part of the reason for this is the
openness in the ecosystem: applications can be downloaded
from the Web and through unofficial application stores. The
stores may be checking for malware with varying strictness
while for Web links, there may be very little the user can do
to know whether the downloaded applications are trusted.

It is also noteworthy that most Android malware comes
as trojans, i.e., applications that have a purported useful
function as well as a hidden malicious function. Android
implements a sandboxed application model, so that the
compromise of one application does not directly mean
compromise of the whole system. In the context of the Web
and browsers, this means that drive-by-download attacks are
difficult. Therefore, malware infections on Android happen
not through drive-by-download attacks, which are fairly
common on some other operating systems, but through
trojans.

In our methodology, therefore, we do not attempt to
detect drive-by-download attacks but rather scams that may
entice users into downloading trojans or applications that
charge users exorbitant amount of money.

3 AD NETWORK IDENTIFICATION

Applications that monetize with advertisements partner with
ad networks and embed code called ad libraries from them
to display and manage those advertisements. Our goal in

this section is to comprehensively identify ad networks that
participate in the Android ecosystem. Some simple domain
knowledge, such as which ad networks are in the market,
may not provide a comprehensive list. We instead resorted
to a systematic approach to do this by analyzing ad libraries
found in a large number of actual Android applications.

Our approach allows for comprehensive identification
of ad libraries with very little manual effort. We begin by
analyzing relationships among different entities in the ap-
plication to identify independent code components, some of
which could be ad libraries. We then map these components
to robust feature sets derived from Android SDK APIs and
then, based on these feature sets, cluster these components.
The components can then be manually studied with little
effort to identify if they correspond to some ad networks. In
the following, we describe our approach in greater detail.

3.1 Component Decoupling

In general, the main application functionality is only loosely
coupled with the functionality of ad libraries. The entire
logic of fetching and displaying ads is implemented in the
ad libraries while the other parts of the application may only
occasionally make calls into the ad library code. Intuitively,
in the application call graph and def-use graph, we would
therefore see a densely connected region corresponding to
the ad library which is only loosely connected to the other
components of the application. Our goal here is to separate
out these loosely connected components.

Specifically, in order to decouple components, we im-
plement the technique described by Zhou et al. [9]. They
measure coupling in terms of of characteristics such as field
references, method references, and class inheritances across
classes. We build a dependency graph among Java classes:
two classes are connected by an edge if code in one of them
refers to that in the other through field references, method
references, and class inheritances. Edges have weights and
multiple edges between two vertices are collapsed and
replaced by a single edge with the total of the weights of
those edges. How closely a class is connected to another class
is quantified by the total weight on the edges between the
vertices.

Having built such a graph, we iteratively collapse any
vertices that are connected by an edge whose weight exceeds
a threshold. The final result is a reduced graph whose
vertex set is the desired loosely coupled components. Each
component contains a group of classes, which are usually
succinctly identifiable with a few packages (Java packages
are hierarchical namespaces in which class definitions are
organized). Such succinct identifiers are useful when per-
forming manual analysis later.

Ideally, all the packages of one ad library will be grouped
into one component while the non-related packages will be
placed in other components. However, the errors are tolerable
and can be manually analyzed.

3.2 Clustering Components

Once we have identified components in applications, we
can make clusters of similar components over our entire
application set. Ad libraries tend to be used by many
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Fig. 1. Overview of the structure of ad library identification

applications at once and thus bigger clusters are more likely
to correspond to ad libraries that smaller clusters.

Our clustering should be robust against minor differences
in code of components as well as renaming of classes and
packages. This would, for example, enable us to cluster
different ad library versions together. To do this, we first
map our components to the Android APIs that the code in
these components call. These APIs thus form our feature sets.
Note that such features are representative of the functionality
of the code: Different pieces of code performing similar
functions are likely to call the same Android APIs.

A well-known measure of similarity between two sets is
the Jaccard coefficient, which is defined for sets A and B as

J(A,B) =
|A ∩B|
|A ∪B|

Note that 0 ≤ J(A,B) ≤ 1 and J(A,B) is higher when A
and B are similar.

Pair-wise computation of the Jaccard coefficient for
the different components, however, has a runtime that is
quadratic in the number of components and linear in the size
of the sets. A popular approach to reduce the runtime is to
estimate the pairwise Jaccard coefficients for a number of
sets through a locality sensitive hashing (LSH) [7] technique,
such as MinHash [6], where each set is represented as a
constant-sized signature.

We give a brief overview of MinHash here. Let h be a
random hash function mapping elements of sets A and B
to integers. Let us define hmin(S) = minx∈S h(x). It can be
shown that the probability that hmin(A) = hmin(B) is the
same as J(A,B). Thus, by increasing the number of hash
functions used and considering them together, we can obtain
an arbitrarily good estimate of the Jaccard coefficient. For
each API feature, we use p hash functions to calculate hash
values of the set and use the minimum value as an element
of the signature vector. We repeat it q times, therefore, each
signature has q elements for each API feature.(p = 80 and q =
80 in our system).

Lets give a detail description of LSH. LSH divides a
signature into multiple lower-dimensional vectors, called
a band. We choose to divide the signature into b bands

where each band has r elements. We can compare the same
parts of the band between signatures to know whether they
are identical. For each band of a signature, we use a hash
function to calculate their hash values. We use the same hash
function for the same column. If their hash values are the
same, we add them to the same bucket. For example, as we
can see in Figure 1, the first and the third signature of the
first column has the same value [5, 4, 2, 8], indicating their
hash values are the same, so they will be pushed into the
same bucket. If their hash values are not the same in the first
column but the same in other columns, we also push them
to the same bucket.

Algorithm 1 gives the pseudocode of LSH. Sig is a vector
set of signatures. Each vector has b bands and each band
has r elements. hashV alue is a r values hash function, and
Union is a Union-Find data structure. We initialize a union-
find data structure with each component representing one
cluster, and then we union the similar component according
to the LSH algorithm.

Algorithm 1 LSH algorithm

1 for j ← 1 to length[Band]
2 do
3 for i← 2 to length[Sig]
4 do
5 Vaule1 ← hashV alue(Sig[i][j])
6 Vaule2 ← hashV alue(Sig[i− 1][j])
7 if V alue1 = V alue2
8 then Union(Sig[i], Sig[j])

3.3 Manual analysis

Recall that ad libraries are embedded in multiple applica-
tions. Once separated into components by decoupling, the
components belonging to the same ad libraries will likely be
clustered together. We examine manually whether a cluster
represents an ad library and if so, which one. Since ad
libraries appear in a number of applications, we examine
clusters with a size above a threshold, which we choose to
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be 10. This screens numerous clusters that may represent
application-specific code. Next, we choose the most common
package names in a cluster and check if they belong to an ad
library – this can be done by search for those package names
on the Web.

3.4 Incremental analysis
Our technique easily supports incremental analysis to i-
dentify new ad libraries in newly published applications.
To accomplish this, we provide two features. First, we can
persist the clusters and features on storage and instantiate
our runtime data structures, e.g., union-find, from these
clusters. Handling new applications is simply a matter of
decoupling components in them, creating clusters for them,
and merging them with the previous clusters. Second, to aid
manual analysis, we save a list of package names that we
had confirmed earlier to be or to not be ad libraries. This
saves redundant effort in examining package names.

3.5 Complexity comparison
Suppose that we get N modules and need to cluster them
next. In the previous algorithm, we calculate the Jaccard
coefficient between modules and cluster the modules based
on the the value. The complexity is O(x2). When applying
MinHash and LSH, as described in 3.2. We consider the time
of getting hash value is a constant because the input value of
hash function is less than the number of Android SDK APIs.
So the complexity of getting signatures of API feature is
O(N). For the LSH part, the complexity is O(N) because the
length of the signature is q = 80 and q = b * r. (b and r refers
to the number of bands and the number of elements for each
band). We also validated the reduction in time complexity
empirically. The previous algorithm took about three days to
cluster 10K applications modules, with quadratic increase in
complexity. However, it took only about 15 hours to cluster
300K applications modules when using MinHash and LSH.
Our new algorithm is obviously more efficient.

4 STUDYING MALVERTISING

Our methodology for analyzing app-web interfaces will
involve the following three conceptual components:

• Triggering. This involves interacting with the appli-
cation to launch web links, which may be statically
embedded in the application code or may be dy-
namically generated (such as those in the case of
advertisements).

• Detection. This includes the various processes to
discriminate between malicious and benign activities
that may occur as a result of triggering.

• Provenance. This is about understanding the cause or
origin of a detected malicious activity, and attributing
events to specific entities or parties. Once a malicious
activity is detected, this component provides the
information required in order to hold the responsible
parties accountable.

Different processes and techniques may be plugged-in to
these different components almost independently of what
goes into the other components.

The rest of this section elaborates on these three com-
ponents, describing the various processes we incorporate
into each of them. An overall schematic depiction of all the
involved processes is presented in Figure 2.

4.1 Triggering App-Web interfaces
In order to trigger web links from within the application,
we run the applications in a custom dynamic analysis
environment. To enable scalability and continuous operation,
running applications on real devices is not a feasible option.
We deployed our system using multiple AVDs (20 in our
test) in parallel for large-scale testing. If we use multiple real
phones to run apps, it will increase the costs. Besides, with
an application installed on a real phone, it may affect the
results of other applications in spite of uninstalling it before
installing another application. If we use emulators, we can
kill the previous emulator and start a clean emulator to for a
new application. Our system can easily support real phones
for analyzing apps although we do not choose it. Therefore,
each application is run in a virtual machine based on the
Android emulator. The applications we are interested in are
primarily GUI oriented and therefore we need to navigate
through the GUI automatically to trigger app-web interfaces.
The rest of this subsection describes the techniques that we
leverage from past research in order to accomplish this, as
well as some new techniques designed to overcome issues
specific to the app-web interface.

4.1.1 Application UI Exploration
Application user interface (UI) exploration is necessary to
trigger app-web interfaces. Researchers have come up with
a number of systems for effective UI exploration catering to
varied applications and incorporating different techniques
(Section 7). An effective UI explorer will offer high coverage
(of the UI, which may also translates to code coverage) while
avoiding redundant exploration. For our work, we used the
heuristics and algorithms developed in AppsPlayground [10].
We briefly describe these next.

UI exploration generally involves extracting features (the
widget hierarchy) from the displayed UI and iteratively
constructing a model or a state machine of the applica-
tion’s UI organization, i.e., how different windows and
widgets are connected together. A black-box (or grey-box)
technique, such as AppsPlayground, may apply heuristics
to identify which windows and widgets are identical to
prevent redundant exploration of these elements. Window
equivalence is determined by the activity class name (an
activity is a code-level artifact in Android that describes one
screen or window). Widget equivalence is determined by
various features such as any associated text, the position of
the widget on the screen, and the position in the UI hierarchy.
In order to prevent long, redundant exploration, thresholds
are used to prune the model search.

4.1.2 Handling Webviews
While studying advertisements, we faced a significant chal-
lenge: most of the in-app advertisements are implemented
as customizations of Webviews (these are special widgets
that render Web content, i.e., HTML, JavaScript, and CSS).
Webviews and some custom widgets are opaque in the UI
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Fig. 2. Overview of measurement methodology

hierarchy obtained from the system, i.e., the UI rendered
inside them cannot be observed in the native UI hierarchy
and thus interaction with them will be limited. To the best
of our knowledge, previous research has not proposed a
satisfactory solution to this problem.

Certain open source projects, such as Selendroid [11],
may be used to obtain some information about the internals
of the Webview. We developed code around Selendroid to
interact with Webviews. However, our experience was that it
is difficult to use the information provided from Webviews to
trigger advertisements. Advertisements often include specific
buttons (actually decorated links) that should be clicked
to trigger the ads. They may also present other features
such as those relating to users’ preferences, but which are
irrelevant for our purposes. The relevant links cannot easily
be distinguished from the irrelevant ones. Often times the
click-able link is represented by images instead of text. If we
click the irrelevant links, ads may not get triggered, resulting
in low click-through rates.

Algorithm 2 Button detection algorithm
1. Perform edge detection on the view’s image
2. Find contours in the image
3. Ignore the non-convex contours or those with very small
area
4. Compute the bounding boxes of all remaining contours

In order to overcome this issue of essentially flat We-
bviews, we apply computer vision techniques in order to
detect buttons and widgets as a human would see them.
Algorithm 2 presents the detection algorithm.

The first step, edge detection, is the technique of identify-
ing sharp changes in an image. Fundamentally, it works by
detecting discontinuities in image brightness. We specifically
use the Canny edge detection algorithm, a classical, yet
generally well-performing edge detection algorithm. In the
second step we compute contours of images, using the
computed edges, to obtain object boundaries. Since buttons
typically have a convex shape and a large enough area so
that a user can easily tap on them, we ignore non-convex
contours and those with a small area within a threshold
parameter. Numerous contours such as those arising out of
text or the non-convex or open contours in embedded images
are eliminated in this step. For the remaining contours, we

compute the bounding boxes, or the smallest rectangles that
would contain those contours. This step is simply to identify
a central point where a tap can be made to simulate a button
click.

The resulting bounding boxes signify the buttons that
would be visible to a human being. We have not performed
a thorough evaluation of the accuracy of our technique but
the results are good in the cases we have examined. Figure 4
presents some cases related to ads as well as other views. We
note that this technique depends only on computer graphics
and vision algorithms, is completely black box as it does not
even need to extract the UI hierarchy from the system. It can
therefore be generally used for any widget whose internals
are opaque to the UI hierarchy extraction. This technique
also achieves a slightly better click rate on advertisements
(measured by the number of redirection chains generated
on exploring a given large number of applications) than the
previous technique based on Selendroid. In our deployment,
we therefore employ this second technique only.

4.2 Detection
As the links are triggered, they may be saved for further
analysis and detection of malicious activity such as spreading
malware or scam. We would like to capture the links,
their redirection chains, and their landing pages. The links,
redirection chains, and the content of the landing pages may
then be further analyzed using various methods.

4.2.1 Redirection chains
Advertisements redirect from one link to another until they
finally arrive at the landing page. As discussed earlier, the
redirection may be a result of ad syndication and auction or
may even be performed within an ad network itself or by
the advertisers themselves. An example redirection chain of
length five is shown in Figure 3. Redirection chains may also
be observed in non-ad links. Redirection may be performed
using several techniques, including HTTP 301/302 status
headers, HTML meta tags, and at the JavaScript level.
Furthermore, we found that certain ad networks such as
Google ads use time-based checks (preventing following
the chain too quickly) in order to reduce possibility of
click fraud. The result of this is that the links must be
launched in real-time to obtain redirection messages. In
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http://mdsp.avazutracking.net/tracking/redirect.php?bid_id=8425..&ids=BMjgzfjI1..&_m=%07
publisher_name%06%07ad_size%06320x50%07campaign_id%0625265%07carrier%06%07category%06IAB7%07
country%06..%07exchange%06axonix%07media%06app%07os%06android&ext=

http://track.trkthatpaper.org/path/lp.php?trvid=10439&trvx=f3ea3ff0&clickid=XVm..&pub_name=
{publisher_name}&ad_size=320x50&camp_id=25265&carrier={carrier}&iab_category=IAB7&country=..&
exchange=axonix&media=app&os=android

http://com-00-usa5.com/lps/thrive/android/hp/win/us/congrats_blacksmrt/index.php?isback=1&backid1
=10451&backid2=90ca7507&sxid=b2f..&tzt=..&devicename=&mycmpid=10439&iphone_o=2199&ipad_o=2198&
os=android&isp=..&country=US&clk=fln&trkcity=..&clickid=X..Q&pub_name=%7Bpublisher_name%7D&
ad_size=320x50&camp_id=25265&carrier=%7Bcarrier%7D&iab_category=IAB7&exchange=axonix&media=app

http://track.trkthatpaper.org/path/lp.php?trvid=10608&trvx=2721e17a&clk_ip={clk_ip}&clk_campid=
{clk_campid}&clk_country={clk_country}&clk_device={clk_device}&clk_scr=480x800&clk_tch=true&
clk_campname={clk_campname}&clk_tzt=0&clk_code=fln

http://com-00-usa5.com/lps/thrive/android/hp/sweeps/us/iphone-winner/index_ipad.php?isback=1&
backid1=10451&backid2=90ca7507&sxid=377..&tzt=..&devicename=&mycmpid=10608&os=Android&
devicemodel=Android+4.2&devicetype=mobile&isp=..

Fig. 3. An example redirection chain. Lengthy query parameters and those that are could reveal authors’ identity (through location/ISP) have been
redacted. This example chain is also useful in understanding the case study presented in Section 6.6.2.

order to ensure that our approach accurately follows the
redirection chain regardless of the redirection technique used,
we use an instrumented web browser to follow the chain,
just a real user would. We implemented a custom browser
that runs inside the virtualized execution environment so
that the ads are loaded completely realistically inside the
browser allowing full capture of the redirection chains. Our
browser implementation is based on the Webview provided
in Android. With Javascript enabled and a few other options
tweaked, it behaves completely like a web browser. We
additionally hook onto the relevant parts to log every URL
(including redirected ones) that is loaded in it while freely
allowing any redirections to occur.

4.2.2 Landing pages
Landing pages, or the final URLs in redirection chains, in
Android may contain links that may lead to application
downloads. Malicious landing pages may lure the users
into downloading trojan applications. We load the landing
pages in a browser configured with a realistic user agent
and window size corresponding to a mobile device, so that
the browser appears to be the Chrome browser on Android.
We then collect all links from the landing page and click
each to see if any files are downloaded. Simulating clicks on
pages loaded in a browser ensures that links are found and
clicked properly in the presence of Javascript-based events.
The downloaded files are analyzed further as below.

4.2.3 File and URL scanning
The collected URLs and files may be analyzed in various
ways for maliciousness. In this paper, rather than developing
our own analysis, we used results from URL blacklists and
antiviruses from VirusTotal. VirusTotal aggregates results
from over 50 blacklists and a similar number of antiviruses.
Each URL collected, either the landing page or any other
URL involved in the redirection chain, is scanned through
URL blacklists provided by VirusTotal. This includes black-
lists such as Google Safebrowsing, Websense Threatseeker,
PhishTank, and others. Files that are collected as a result
of downloads from the landing pages are scanned through
the antiviruses provided on VirusTotal. Antivirus systems

Fig. 4. Examples of detecting buttons with bounding boxes. The bounding
boxes are depicted as red rectangles. The top two figures contain the
whole screen while the bottom figure is just an ad. Note the detection of
buttons.

and blacklists are known to have false positives. In order to
minimize the impact of this, we use corroboration to reduce
the false positive rate: we say a URL or a file is malicious
only if it is flagged by at least three different blacklists or
antiviruses.

4.3 Provenance

Once a malicious event is detected, it is necessary to make the
right attributions to the parties involved so that these parties
can be held responsible and proper action may be taken. In
our system, we use two aspects as part of provenance.

• Redirection chain. The redirection chain, which is
already captured as part of the detection component.
The redirection chain can be used to identify how the
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final landing page was reached: if the landing page
contains something malicious, the parties owning the
URLs leading up to the landing URL can be identified.

• Code-level elements. The application itself may include
code from multiple parties such as the primary appli-
cation developer as well as ad libraries from a variety
of ad networks. In order to launch one application
from another, Android uses what are called intents.
URLs may be opened by applications in the system’s
web browser by submitting intents to the system with
specific parameters. We modify the system to log
specific intents that are indicative of URL launches
together with which part of the code (the Java class
within which the launching code lies) that submitted
the intent. This allows us to determine which code
with an application launched the malicious URL.

It is important to identify the owners of the code classes
captured as part of provenance: do they belong to the
application developer or an ad library, and if they belong to
an ad library, which one is it? In order to assist us in doing
this, we therefore perform the one-time task of identifying
prevalent ad libraries and their associated ad networks.

5 IMPLEMENTATION

We implemented most of our system in Python. For UI
exploration, we make use of the source code of the App-
sPlayground tool [12]. However, the existing version of the
tool is unable to run on current versions of Android, and
we therefore reimplemented the system to work on current
Android versions with the same heuristics as are described
in the AppsPlayground paper. Furthermore, instead of using
HiearchyViewer for getting the current UI hierarchy of
the application, we used UIAutomator, which is based on
the accessibility service of Android. This had a significant
and positive effect on the speed of execution. The graphics
algorithms used for button detection were provided by the
OpenCV library and appropriate thresholds were chosen
after repeated testing.

To improve speed of dynamic analysis, we take advantage
of KVM-accelerated virtualization. To use this, we use
Android images that can run on the x86 architecture. About
70% Android applications have no native code and so can
run without problem on such targets. Other applications
contain ARM native code and cannot run on x86 architecture
without proprietary library support. We therefore excluded
applications containing native code. Despite this we still
believe the study results are generally representative.

For post-trigger analysis, our entire framework is man-
aged through Celery [13], which provides job management
with the ability to deploy in a distributed setting. In our
implementation the app UI exploration as well as the
recording of redirection chains with a real browser happens
in tandem. Once this stage is completed, any recorded
redirection chains are queued through a REST API into the
Celery-managed queue together with information about the
application and part of the code that was responsible for the
triggering of the intent that led to the redirection chain. Tasks
are pulled from the queue to perform further analysis on the
landing pages and scan the files and URLs with VirusTotal
as described above. The whole system has proper retry and

timeout mechanisms in place and could run for multiple
months without significant need of human attention.

6 RESULTS

6.1 Application Collection

Our application dataset consists of 492,534 applications from
Google Play and 422,505 applications from four Chinese
Android application stores: 91, Anzhi, AppChina, and Mu-
mayi. Google Play has a proprietary API for searching and
downloading applications from the store and it further
requires Google account credentials to do these tasks. We
used PlayDrone, which is an open source project to crawl
Google Play [14]. Google implements rate limiting based on
Google accounts and IP addresses and bans accounts and IP
addresses if there are too many requests in a given period
of time. PlayDrone mitigates this problem by seamlessly
allowing the use of multiple Google accounts and deploying
the crawler over multiple machines in a distributed manner.
We used the multiple Google accounts feature but simplified
the system by using a single machine and setting multiple
IP addresses for that machine. In our deployment, every
new connection to Google’s servers randomly chooses from
among twenty source IP addresses. We used PlayDrone to
download over half of the free applications on Google Play
at the time of download. We met resource limitations in
our PlayDrone setup that prevented us from being able
to download rest of the applications. Nonetheless, given
the large percentage of applications downloaded, we are
confident these applications are representative of all appli-
cation categories. Based on manual sampling from these
applications, this set of applications also not biased on
application popularity, ratings, downloads, permissions, and
other such common metrics.

To crawl applications from Chinese application stores, we
used our own in-house tool. These third-party stores have
a much simpler API than Google Play and typically have
a public http/https URL associated with each application.
While there can be sophisticated ways to search for each
application, the technique we employed was based on the
observation that applications in all these stores have identi-
fiers in a small integer range. Requesting URLs constructed
for each possible identifier sufficed to completely scrap these
applications stores. After removing applications that were
redundant among these stores, the total number amounts to
422,505. About 30% applications have native code and due
to implementation reasons mentioned in Section 5 cannot be
tested on our system. Our entire usable application dataset
therefore consists of a little over 600,000 applications.

6.2 Deployment

We deployed our system to gather results over a period of
about two months from mid-April 2015 to June 2015 in two
locations, one in a North American university and the other
in a Chinese university. The deployment ran continuously
with little manual intervention, and restarts were necessary
only when we needed to update the system for fixing bugs
or adding features. To have a realistic setting, the North
American university location ran applications from Google
Play while the Chinese university location ran applications
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Fig. 5. Top 50 popular ad library from 150,000 applications.

from Chinese application stores. The location where the apps
are run is important because much of advertising, which
forms bulk of the app-web interaction we are studying, is
targeted based on location. The advertisements that are seen
in one location may not be shown in another location.

6.3 Popularity

We studied how different ad networks share the market
based on a variety of metrics. We quantify ad network usage
with the number of applications.

We crawled 150,000 applications in July 2016 including
50,000 from Google Play and 100,000 from the Baidu markets.
We identify ad libraries by package names. We decompiled
applications to get all Java package names and matching
them with ad libraries we found. Figure 5 presents the num-
ber of applications using an ad network. The ad networks on
the x-axis are ranked (sorted) by the number of applications
that use them. As the total number of Google ad networks is
very high, it is not feasible to show on the figure. Google ads
ranks at the top, being used in 41% applications. Domob and
Chartboost come next but are an order of magnitude behind
Google ads.

6.4 Detection of ad libs

Using the approach from Section 3, we were able to iden-
tify 242 ad networks in 300,000 applications which were
downloaded between April 2015 and July 2016. The analysis
required about 15 hours spending on compute time. This
demonstrates the scalability of the approach, even when
applied to a large number of applications.

Some ad networks have ad libraries with several package
names. For example, com.vpon.adon and com.vpadn
belong to the same network. We combine such instances
together to be represented as ad network for later mea-
surements. More notably, Google’s Admob and DoubleClick
platforms are both represented as Google ads.

Our approach to use package names to identify ad
libraries is contingent upon the assumption that ad library
packages are not obfuscated. This is true for most cases
that we know of: the top-level packages work quite well to
identify most ad libraries. However, Airpush is one known
ad network that obfuscates its ad libraries such that they
are no longer identifiable with package names [15]. While
applying our second approach, which is immune to lexico-
graphic obfuscations, we also detected obfuscated Airpush
packages, all ending up in a few clusters. The clusters have
the non-obfuscated package com.airpush.android as well as
obfuscated ones like com.cRDpXgdA.kHmZYqsQ70374 and
com.enVVWAar.CJxTGNEL99769.

6.5 Overall Findings
Overall, we recorded a total of slightly over 1 million
launches of app-to-web links in the North American location.
In the Chinese location, this number was 415,000. Note that
this is not a direct correspondence with the applications:
some applications may result in more than one launch while
others may not result in any. In North America, we detected
a total of 948 malicious URLs coming from 64 unique
domains. For the Chinese deployment we detected 1,475
malicious URLs that came from 139 unique domains. We also
downloaded several thousands of files of which many were
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Fig. 6. Malicious files downloaded through ad libraries and through other
links not affiliated with any ad libraries in North American deployment.
Libraries not resulting in malware downloads are not shown. Tapcontext
malware numbers are not shown here as they are too high.

Fig. 7. Malicious files downloaded through ad libraries and
through other links not affiliated with any ad libraries in
Chinese deployment. Tapcontext and libraries not resulting
in malware downloads are not shown.

simple text files or docx files. As for the number of Android
applications, the North American deployment collected 468
unique applications (from the Web, outside Google Play) of
which 271 were found to be malicious. A large chunk (244) of
these malicious applications comes from the antivirus scam
reported in Section 6.6.1. Excluding this anomalous number
of 244, we find that one in six applications downloaded
from the Web (outside Google Play) are malicious. The file
numbers above do not include the applications hosted on
Google Play. We accounted for such applications separately:
there were 433,000 landing Google Play landing URLs, i.e.,
http URLs with play.google.com domain or URLs with
market scheme (beginning with “market://”). These Google
Play landing URLs led to a little over 19,000 applications
on Google Play. About 5% of these labels are labeled as
malicious (based on our criterion of being flagged by at least
3 antiviruses) on VirusTotal. Based on our manual check
of the antivirus labels, however, all of these appear to be
adware. On the Chinese deployment side, we collected 1,097
unique files of which 435 are malicious. 102 of these files are
from the antivirus scam of Section 6.6.1.

Figures 6 and 7 present the distribution of malware down-
loads through various ad libraries in the North American
deployment and in the Chinese deployment respectively.
The “others” bar presents the downloads through web links
not embedded in advertisements. Both the higher diversity
and higher number of malicious downloads in the Chinese
deployment are noteworthy. This is likely because the North
American Android ecosystem is centered around Google
Play and application downloads outside it are rare. However,
the Chinese ecosystem depends much more on the Web and
third-party Android application stores.

6.6 Case Studies
In this section we describe some interesting cases of scams
and malicious applications.

6.6.1 Antivirus Scam
We discuss here an antivirus scam campaign. We found the
antivirus, Armor for Android, to be heavily campaigned for

through multiple applications in both the North American
and the Chinese experiments. In our traces, the entire
campaign is running off an ad network known as Tapcontext.
In fact, based on our observation lasting a few months, the
entire ad inventory of this ad network appears to be related
to Armor for Android only.

Applications show the antivirus advertisements as any
normal advertisement. In addition, they also sometimes
automatically begin scanning for malware on the device
(Figure 8 (a)). Our investigations on the Web seemed to
clarify this: an apparent Tapcontext representative admits
that the ad library has a tie up with an antivirus company
that conducts a real scan of the device (perhaps by gathering
application checksums and getting information about them
from their server) [16]. The scan does show real results but
labels minor adware also as threats while still not revealing
additional information to the user what threats were found
unless a purchase is made.

The next aspect to the scam-like operation is that when the
user clicks on an advertisement to download the application,
the ad library launches a web page that looks very similar
in appearance to a native Android dialog box prompting
the user to download and install the antivirus application
through the “Download & Scan FREE Now” button. Upon
clicking this button, a file by the name of “Scan-For-Viruses-
Now.apk” is downloaded. We note that Tapcontext embeds
a unique identifier to each click so that the URL of the
web page is different every time while the appearance is
the same. However, all the URLs come from two domains
only: www.fastermobile.org and www.fastermobiles.com.
Furthermore, each downloaded Scan-For-Viruses-Now.apk
file is the same application (has the same functionality) but
is slightly different so that their MD5 and SHA digests never
match.

The antivirus application is considered a scam by several
antiviruses and some Internet outlets [17] and is variously
called as FakeApp, Fakealert, Fakepay, and FakeDoc by
antiviruses in their malware labellings. The application
charges a hefty subscription fee of 0.99 GBP a day. While the
application is also hosted on Google Play (discussing whether
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this is compliant with Google Play’s policies is beyond the
scope of this paper), the advertisements we saw directed
users to download applications from outside Google Play.

Our detection of this campaign was through the “Scan-
For-Viruses-Now.apk” files that were detected by antiviruses
on VirusTotal. Manual analysis after these detections led us
to also discover how the web page with the appearance of
an Android dialog box was designed to phish users. We
note that we had already detected this scam campaign and
identified this phishing behavior at least twenty days prior
to Google Safebrowsing and a few other URL blacklists
on VirusTotal incorporating www.fastermobile.org URLs as
phishing URLs.

The above highlights the importance of running such
frameworks on a continuous basis. It is likely that the
phishing web pages we detected are not discoverable directly
through the Web and hence inaccessible to either search
engines or URL safety evaluation infrastructures like those of
Google Safebrowsing. By exploring the Web that is reachable
from mobile applications, the doors for further analysis
are opened and it becomes easier to identify and blacklist
phishing websites leading to previously known malware and
thus protecting the users.

This case study also offers a good example of how frame-
works such as ours can be used to understand and expose
scamming ad networks such as Tapcontext. The Tapcontext
ad network is being used by more than 1,800 applications in
our dataset. Application developers incorporate ad networks
for making money; however, such scam networks jeopardize
the applications’ reputation and are likely to do more harm
than good to the developers’ revenue. Furthermore, such
evidence may also be used by application markets and law
enforcement groups to hold ad networks more accountable
for the content they present.

6.6.2 Free iPad Scams
In our experiments, we encountered several instances of win-
free-iPhone or win-free-iPad advertisements. In our traces,
these advertisements had a few landing pages with domains
such as com-00-usa5.com and 1.cdna.com, possibly from
unrelated parties (based on Whois records). These landing
pages present the user in flashy language that they have been
lucky, an iPhone (or some other electronic) is theirs if they go
to the next step. The example figures are shown [8]. all the
users seeing the particular page are “lucky” and “randomly
selected to qualify for the special offer”. The tricked users
upon continuing are lead to a page asking for some ques-
tions. This same page may itself come from different URLs
such as http://www.electronicpromotion.com/Flow.aspx
and http://www.promotionalsurveys.com/Flow.aspx. The
page collects the users’ personal information such as name,
email address, physical address, and phone number and
then leads to a website called http://www.amarktflow.com/.
The user ends up answering lengthy surveys, confirming the
personal information already provided, and then prompted
to install an app or a browser toolbar.

None of the above websites themselves are flagged
by URL blacklists on VirusTotal. WOT, a crowd-sourced
reputation system for websites, however presents a “very
poor” reputation for http://www.amarktflow.com/ and
considers it a possible scam [18]. The users are simply enticed

to give away their personal information, which could be sold
or abused, and it is not clear if even a single iPhone or iPad is
distributed out to any of the users. Similar scams have been
covered in the past in other contexts. Sophos reported a free
iPad scam being run through a Facebook application [19].
Similar scams propagating through spam email and SMS
messages and over the Web have been covered and discussed
elsewhere [20], [21].

We next bring the reader’s attention to how this scam
shows up in mobile advertisements. The URL blacklists on
VirusTotal flagged some of the intermediate redirection URLs
as malicious or phishing websites. The concerned domains
here include avazutracking.com and track.trkthatpaper.org.
Based on our results, all URLs relating to these domains are
not actually bad. These domains appear to be parts of some
advertisement networks and exchanges and do show non-
malicious content also. Likewise, the com-00-usa5.com men-
tioned earlier also presents non-malicious advertisements.

The developers are actually unaware that they are using
ad services that may show scam content. In our experiments,
all the free iPhone and iPad scams appear from two ad
libraries: Mobclix and Tapfortap. These libraries retrieve
ad content from so-called ad exchanges where multiple
networks participate and bid to show advertisements in
the given ad space. The bidding ad networks may further
have syndication relationships with other ad networks and
may allow those networks to show ads on their behalf. In
many of these cases of free iPad scams, we believe that
Mobclix leverages Axonix, which is another ad exchange.
Consider the example redirection chain shown in Figure 3. In
between it redirects through multiple domains belonging
to ad exchanges and networks with the URLs passing
information to those following them through query parame-
ters. Because of this complicated infrastructure of multiple
networks involved, it becomes difficult for the developers,
ad libraries like MobClix and Tapfortap, and perhaps even
the ad networks on top to ensure the quality of the content
presented.

Our system is again useful here. If deployed by a respon-
sible party, such as Google or a government agency, which
can hold the content publishers accountable, the collected
traces can be of invaluable help in getting to the offending
parties and gathering evidence against them. In this way, it
may be possible to limit the scam content shown to the users.

6.6.3 Scams Through Direct Links
We also encountered scams the result of which is very similar
to the free iPad scams described in the previous section.
However, how they originate is different. Rather than an
advertisement embedded in the application leading to the
scam page, in these cases, a web link statically embedded in
the application leads to the scam page. The web link appears
to link to a benign website not related with advertisements or
scam; however, it contains code that loads an advertisement,
which then redirects through a series of URLs to a scam
landing page. An example is shown in Figure 9. When the
user taps on the button labeled “Fiestas de hoy” (Parties
Today), a web page opens in the browser and redirects to
the scam webpage. As an aside, note the scam page actually
shows the user’s city (hidden here for authors’ anonymity),
derived from the client’s IP address, perhaps to engender
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(a) (b)

Fig. 8. Armor for Android antivirus scam. (a) Application conducting
gratuitous virus scan; (b) A web page imitating Android dialog box
asking user to install the antivirus.

(a) (b)

Fig. 9. Another free iPad scam. The scam originates not through
an ad in the app but through a link statically embedded in the
application (in this case, ”Fiestas de hoy”). Upon clicking this link
an ordinary URL is launched and as the web page loads, it is
redirected to web-based ad providers that show the scam. Note
also the presence of the Facebook icon on the web page even
though there is no association between Facebook and this website.

confidence in the user. More importantly, it also shows the
Facebook logo even though it is not affiliated to Facebook,
bringing the scam at the brink of phishing as well.

We found a number of applications having such behavior
of leading to scams through links embedded in them. The
applications we found do not exist on Google Play anymore
(although Google’s VerifyApps service does not label them
as malicious, so removal due to being malicious is unlikely).
Our detection of such scam was based on certain URLs whose
domains (e.g., zb1.zeroredirect1.com) are nearly always
flagged by VirusTotal blacklists. In our automatic attribution
of the attack, we found that this scam is not attributed
to any of the ad libraries that we detected in Section 3.
Looking manually, some of the application’s own classes
were involved, and it was static links embedded in the app
that led to scam pages.

We are not sure if the developers themselves are aware
that these applications are participating in propagating scams.
It is possible that the developers simply embedded some
links and host advertisements on those web pages without
knowing that advertisements could lead to scam. On the
other hand, some of these applications always seem to lead
to scammy advertisements (during the time we tried them);
developers may thus knowingly be participating in such
scams. The link in the application discussed here being name
“Fiestas de hoy” or “Parties today” seems to also signify this.

6.6.4 Fake Movie Player Malware

Our deployment in China also detected several instances
of advertisements on Baidu and Nobot ad networks. These
advertisements tell the user that they can play videos for free.
An example screenshot is shown in Figure 10.

Advertisements like the one at the bottom of the screen-
shot lead the user to either directly download a video player
application, or take to a web page containing pornographic

Fig. 10. A screenshot with an ad from Nobot at the bottom. The ad says
in Chinese that it is free to play video using your mobile phone. It leads to
download a video player. The purported video player is actually an SMS
trojan.

images and prompt the user to download a video player from
there. Our system was able to trigger the ads and download
the video player applications. These applications are however
malicious and, more specifically, SMS trojans, i.e., they send
SMS messages to premium numbers without users’ consent.
On VirusTotal nearly 30 antiviruses detect these applications
under various names such as SMSSend and SMSPay. Based
on their permissions, some of these applications can also,
apart from sending SMS messages, make calls without user
confirmation, read and write SMS messages, and monitor
applications running on the system.

The number of instances of such advertisements we
found was not small either. Our system had triggered 30
advertisements on the Baidu ad network and 3 on the Nobot
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network. We also note that many of these advertisements do
not have any redirection chains: the ad just directly leads
to the apk or the landing page. Therefore, we believe it
should have been easy for them to spot the malware and
block the advertisements. In some cases, there would be
a one-level redirection only, going through a site such as
http://csu.ssooying.com/QnqQvy. This site is now blacklist-
ed by four URL blacklists, including Google Safebrowsing, on
VirusTotal. However, it was not detected by those blacklists
at the time these advertisements were seen by our system.

We are pursuing this case, together with the provenance
collected wit our system, with CNCERT, an non-profit, non-
government organization in China that handles cybersecurity
emergency response and to which ad networks are answer-
able for their content. As an aside, when we manually studied
these two ad networks, we were able to see a pharmaceutical
campaign that sell alternative therapy drugs for sexual fitness.
Based on the content, the campaigns’ claims seem dubious so
that they could very well be classified as another scam. Even
though VirusTotal URL blacklists do not flag the campaign’s
website, other vendors such as Qihoo 360 flag it as fake and
trick website.

7 RELATED WORK

7.1 Advertisement Security and Privacy
Mobile advertisements have been studied in the past from
multiple security and privacy perspectives such as ad fraud
and security and privacy implications of using ad-supported
applications. Liu et al. [22] study a king of ad fraud in
which the developer places ads and the main application
widgets in such a way that it becomes easy for the user
to mistakenly click on ads. Crussell et al. [23] study ad
fraud in mobile applications from a network perspective.
They identify repackaged applications with the purpose to
direct ad revenue away from the original developers and
to the persons who repackaged the applications and study
the prevalence and implications of this kind of ad fraud.
Our main concern in this paper is not ad fraud but the
propagation of malicious content through advertisements
and web links embedded in applications.

Several researchers have also studied privacy leakages
through ad libraries. TaintDroid [24] and some follow-up
works [10], [25] all present results in which a large majority
of privacy leakages happen through ad libraries included
in the applications. While the previous list of works uses
dynamic analysis, researchers have also used static analysis
to identify privacy leaks in applications, and through ad
libraries in particular [26], [27]. Privacy leakages in ad
libraries are not in the scope of this paper. However, we
do study scams that extract personal information of the
users, even with their consent. Grace et al. [28] perform static
analysis of ad libraries to discover a number of implications
such as private data leakage and execution of untrusted
advertisement code in applications. Industry researchers
also detected vulnerabilities in ad libraries that can provide
escalated privileges to the advertisement code that these
libraries execute [29]. AdSplit [30] discusses that ad libraries
should be separated from the main application, running
in a different sandbox, so that they can have different
permissions from the applications, and vulnerabilities and

privacy leakages in them do not affect the main application.
Quire [31] also proposed techniques that can achieve a similar
effect. The goal of this paper is not to identify vulnerabilities
due to the inclusion of ad libraries or to fix such problems.
The web links or advertisements embedded in applications
may themselves not be malicious but their end result is.

A more related aspect of advertising security research
is the so-called web malvertising. An important part of our
study is malicious advertising in mobile applications. The
analogous problem of malicious advertising on the Web,
dubbed as malvertising, has been studied in the past. Li et
al. [5] use a systematic methodology to crawl websites and
load ad content in them. They then analyze the redirection
chains and landing pages for malicious activity. Zarras et
al. [4] have also studied web malvertising. Our work is
different from these works in several aspects. First, our focus
is on mobile applications; a similar study on mobile apps
has not been done earlier. Moreover, we broadly study all
app-web interaction and not just advertisements. Second, a
study on mobile applications needs an additional triggering
component in the methodology. Work on web malvertising
has a different set of challenges. In our domain, we need
to discover links by driving the application UI and then
click/trigger the links and then follow the redirection chains.
Such challenges of discovering the links are not present in
previous work. Triggering increases the complexity of the
methodology and we have also made an important contribu-
tion to enhance it. Finally, the malware propagation vectors
through web malvertising are different from what we see on
mobile. Drive-by-downloads are virtually non-existent on
mobile platforms such as Android due to sandboxing at the
process level. Similarly link hijacking, i.e., advertisement or
other malicious code embedded in a web page automatically
redirecting users to a page they did not intend without
any user interaction, is also not possible on mobile apps.
Rather the main propagation vector for malware is trojans.
Collecting trojans again complicates our methodology as we
need to automatically download content from the landing
pages.

7.2 Malware Analysis and Detection

Both the industry and the academia are interested in an-
alyzing potentially malicious or malicious applications to
understand their behavior. We discuss here works related to
mobile platforms only. Google has a service called Bouncer
in place to analyze any applications that get uploaded to
Google Play for malicious activity [32]. More recently, Google
also introduced the VerifyApps service that collects all the
applications from the Web, including those not from Google
Play, and curates analysis results on those applications. The
details of analysis are not public but it is likely to be a mix
of both static and dynamic analysis. The results are used to
warn the users whenever they install an application of which
the VerifyApps is suspicious [33].

Mobile Sandbox [34] and Andrubis [35] are some of the
dynamic analysis sandboxes proposed by the academia. They
incorporate several different analyses and produce a report
for the analyzed application, such as the permissions, the
servers contacted while running, and so on. We are not aware
of any analysis system that incorporates the kind of analysis
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we do: understanding the app-web interfaces and following
the web links from applications and analyzing if they host
any malicious content. If such analysis is supported by the
industry or the government, it will be very helpful in curbing
down instances of malicious content reachable from mobile
applications. Moreover, by using their results, it may be
possible for us as well to enhance our detection.

Another avenue of related work is honeypots. Honeypots
interact with attackers allowing them to exploit the honeypot-
s. This way, valuable information, such as malicious servers
and websites as well as previously unknown vulnerabilities,
can be identified. HoneyMonkey [36] is an active honeypot,
i.e., it actively crawls and seeks out websites to connect. It
analyzes the differences in the system state before and after
visiting to determine if it was exploited. Such systems also
need to perform triggering and detection; however triggering
in case of mobile UI is more complicated. Moreover, our
detection also does not seek to identify exploits but to
recognize scams and download trojans.

Researchers have also proposed several techniques to per-
form Android malware detection. Zhou et al. [37] analyzed
mobile applications from Play and third-party application
stores and detected several instances of malware. Grace
et al. [38] perform static analysis on Android applications
to systematically detect malware. Arp et al. [39] introduce
a machine-learning based system to detect and classify
Android malware of previously known families. Zhang et
al. [40] propose a dynamic analysis based on permission
use to detect malicious applications. Feng et al. [41] and
Zhang et al. [42] propose semantics-aware static analyses of
applications so as to defeat malware obfuscation attacks such
as

8 CONCLUSION

In order to curb malware and scam attacks on mobile plat-
forms it is important to understand how they reach the user.
In this paper, we found 242 ad libraries and explored the app-
web interface, wherein a user may go from an application to a
Web destination via advertisements or Web links embedded
in the application. We used our implemented system for a
period of two months to study over 600,000 applications
in two continents and identified several malware and scam
campaigns propagating through both advertisements and
web links in applications. With the provenance gathered, it
was possible to identify the responsible parties (such as ad
networks and application developers). Our study shows
that that should such as system be deployed, the users
can be offered better protection on the Android ecosystem
by screening out offending applications that embed links
leading to malicious content as well as by making ad
networks more accountable for their ad content. A regulatory
authority like CNCERT(National Internet Emergency Center)
could use our tool to understand the prevailing trends in
mobile malvertising and hold the ad networks accountable.
Similar techniques could also be used by the ad networks
themselves to find malvertising in their own networks (note
that this is a non-trivial issue due to multiple ad networks
involved in serving a single ad).
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