
October 21, 2009 Name _____________________________

1

EECS 311 Data Structures

Midterm Exam
Don’t Panic!

1. (10 pts) In the boxes below, show the red-black trees that result from the successive

addition of the given values. Use doubled-lines for red links. Clearly indicate recoloring

and rotations, if any, with intermediate trees and “left” or “right” for direction of rotation.

1. After adding 62 to a tree with 58. 2. After adding 48 to the previous tree.

3. After adding 96 to the previous tree. 4. After adding 34 to the previous tree.

5. After adding 104 to the previous tree. 6. After adding 85 to the previous tree.

62

58 58

6248

48

58

96

62

recolor

58

96

62

34

48

58

62

34

48

104

96

58

96

34

48

10462

58

96

34

48

10462

85

recolor

Comment [CKR1]: Common mistake:

recoloring as soon as 2 red child links

made, instead of when inserting through a
node with 2 red child links.

Comment [CKR2]: Mistake:
forgetting to color the upper link red.

October 21, 2009 Name _____________________________

2

2. (10 pts) In the boxes below, show the binary heaps in tree form that result from the

successive additions of the given values, where larger values beat lower values. Clearly

indicate what swaps occur to maintain the heap.

1. After adding 62 to a tree with 58. 2. After adding 48 to the previous tree.

3. After adding 96 to the previous tree. 4. After adding 34 to the previous tree.

5. After adding 104 to the previous tree. 6. After adding 101 to the previous tree .

58

62

62

58

62

58 48

62

58 48

96

96

62 48

58

96

62 48

58 34

96

62 48

58 34 104

104

62 96

58 34 48

104

62 96

58 34 48 101

104

62 101

58 34 48 96

Comment [CKR3]: A few students
did binary search trees.

October 21, 2009 Name _____________________________

3

3. (5 pts) Using the heap generated in question 2 as a priority queue, show the swaps that

would occur after the first item in the queue is removed.

4. (20 pts) The function getWinner() is supposed to take a vector of names representing

votes for candidates and return the name that appears strictly more than half the time, if

any, or the empty string. Examples:

{ "A", "B", "C", "B", "A", "B", "B", "C", "B" } – winner is "B"

{ "A", "A", "A", "C", "C", "B", "B", "C", "C", "C", "B", "C", "C" } – winner is "C"

{ "A", "B", "C", "B", "A", "B", "C", "B" } – no winner ""

Three correct definitions are below. For each, give the computational complexity with a

reasoned justification.

a)
string getWinner1(const vector<string> &ballots) {

 int len = ballots.size(); this is O(1)this is O(1)this is O(1)this is O(1)
 for (int i = 0; i < len; ++i) this is O(N)this is O(N)this is O(N)this is O(N)
 if (count(ballots.begin(), ballots.end(), ballots[i])

 > len / 2) each count() is O(N), compariseach count() is O(N), compariseach count() is O(N), compariseach count() is O(N), comparison is O(1)on is O(1)on is O(1)on is O(1)
 return ballots[i]; this is O(1)this is O(1)this is O(1)this is O(1)
 return ""; this is O(1)this is O(1)this is O(1)this is O(1)
}

Because we have an O(N) operation done O(N) times, this is O(N2).

62 101

58 34 48 96

62 101

58 34 48

96

62 96

58 34 48

101

Comment [CKR4]: Most common
mistake: filling gap directly with 101.

Comment [CKR5]: Some people said
this was O(N)

Comment [CKR6]: Common mistake:
calling count() O(N) or saying the

comparison was O(N).

It was required to identify count() as the
O(N) component.

October 21, 2009 Name _____________________________

4

b)

string getWinner2(const vector<string> &ballots) {

 int len = ballots.size(); this is O(1) this is O(1) this is O(1) this is O(1)
 map<string, int> votes; this is O(1) this is O(1) this is O(1) this is O(1)
 for (int i = 0; i < len; ++i) ++votes[ballots[i]]; see belowsee belowsee belowsee below
 for (map<string, int>::iterator iter = votes.begin();

 iter != votes.end();

 ++iter) this is O(Kthis is O(Kthis is O(Kthis is O(K))))
 if (iter->second > len / 2) return iter->first; this is O(1)this is O(1)this is O(1)this is O(1)
 return "";

}

For N ballots and K candidates, the first FOR runs O(N) times. Each
votes[] call is O(log K). Second loop runs K times. K, is N in the worst case.
So first loop is O(N log N), so the entire algorithm is O(N log N).

c)

string getWinner3(const vector<string> &ballots) {

 int len = ballots.size();

 string winner = "";

 int tally = 0; these are all O(1)these are all O(1)these are all O(1)these are all O(1)
 for (int i = 0; i < len; ++i) { this is O(N)this is O(N)this is O(N)this is O(N)
 if (tally == 0) winner = ballots[i]; this isthis isthis isthis is O(1) O(1) O(1) O(1)
 if (winner == ballots[i]) ++tally; else --tally; this is O(1)this is O(1)this is O(1)this is O(1)
 }

 if (count(ballots.begin(), ballots.end(), winner)

 > len / 2) the count() is O(N) and the comparison is O(1) the count() is O(N) and the comparison is O(1) the count() is O(N) and the comparison is O(1) the count() is O(N) and the comparison is O(1)
 return winner; this is O(1)this is O(1)this is O(1)this is O(1)
 else

 return ""; ththththis is O(1)is is O(1)is is O(1)is is O(1)
}

The FOR loop runs O(N) times and the body is O(1). So it plus the final
count() call make this O(N).

d) Give an argument for the correctness of getWinner3(). Hint: a vote for one

candidate cancels a vote for another candidate.

If X has a majority, i.e., more than half the votes, X must end up as the final
winner, because it will have at least one vote not cancelled. The final count()
is needed because cases with no majority have “winners” too, e.g., “AABCC”
and “CCBAA”.

Comment [CKR7]: Very common

mistake: assuming this is O(1)

Comment [CKR8]: Common mistake

saying this loop is O(N log N) without

identifying the O(log N) part.

Comment [CKR9]: Common mistake:
saying iterator access was O(log N).

Comment [CKR10]: Accepted just
using N throughout.

Comment [CKR11]: Mistake: saying

this is O(N) worst case. It’s O(N) in all
cases.

Comment [CKR12]: Common
mistake: repeating code in English, which

doesn’t argue for anything.

Comment [CKR13]: Some said not
correct, overlooking the definition of

majority and/or the 2nd FOR loop test.

Note: this the real definition of majority,
and why there’s a runoff in Afghanistan.

Comment [CKR14]: Very common
mistake: saying winner has most votes.
Consider AAABBBC. C wins and has

fewest votes.

October 21, 2009 Name _____________________________

5

5. (10 pts) Using the C++ tree class below, implement zigzigRight(Node *&node)

so that zigzigRight(node->left) or zigzigRight(node->right) inside a Tree

member function would do the rotation shown to the specified subtree:

template <typename T> class Tree {

 private:

 struct Node {

 Node *left, *right;

 T data;

 ...

 };

 public:

 Node * root;

 void zigzigRight(Node *&node)

 {

 Node *g = node;

 Node *p = g->left;

 Node *x = p->left;

 g->left = p->right;

 p->right = g;

 p->left = x->right;

 x->right = p;

 // updates old pointer to g because node is

 // passed by reference

 node = x;
 }

};

Comment [CKR15]: You can get by
with fewer variables, but then you have to

be extra careful about the order in which

things are assigned.

Comment [CKR16]: Common
mistake: not updating node

Comment [CKR17]: Common
mistake: using names like left, right, or

parent that are neither variables nor
members of Tree.

Comment [CKR18]: No NULL
checks needed or desired, since any null

pointers need to be copied.

Comment [CKR19]: root is not

relevant to anything here

Comment [CKR20]: Setting root to
node is a very bad idea. You just reduced
the tree to a subtree.

Comment [CKR21]: Using one
variable temp, if correctly done, was

accepted but that approach takes several
times longer to understand

