
1

Full Name:________________________________

EECS 213 Fall 2010

Final Exam

1. (10 points):

Given a 32-bit address machine with a 2048 byte cache, fill in for each block size (B) and lines

per set (E) as specified below the number of cache sets (S), tag bits (t), set index bits (s), and

block offset bits (b). Give answers in decimal.

B E S t s b

8 4 64 23 6 3

8 256 1 29 0 3

16 1 128 21 7 4

16 128 1 28 0 4

32 1 64 21 6 5

32 4 16 23 4 5

2

2. (10 points):

Describe the sequence of events in this program and its output. Assume the necessary includes are

done and all functions return normally.

pid_t pid, cid;

void handler1(int sig) {
 printf("zip");
 fflush(stdout); /* Flushes the printed string to stdout */
 kill(cid, SIGUSR1);
}

void handler2(int sig) {
 printf("zap");
 exit(0);
}

main() {
 signal(SIGUSR1, handler1);
 pid = getpid();
 if ((cid = fork()) == 0) {
 signal(SIGUSR1, handler2);
 kill(pid, SIGUSR1);
 while(1) {};
 }
 else {
 int status;
 if (wait(&status) > 0) {
 printf("zoom");
 }
 }
}

Output is “zipzapzoom”

The parent sets its handler for SIGUSR1 to handler1, sets pid to its own id, forks, sets cid
to the child id, and waits for the child to exit.
The child sets its handler for SIGUSR1 to handler2, sets cid to 0, sends SIGUSR1 to the
parent, and begins an endless loop.
handler1 in parent prints “zip” and sends SIGUSR1 to child.
handler2 in child prints “zap” and exits child.
The wait in parent returns the child id, parent prints “zoom” and exits.

Comment [CKR1]: Common mistake:

saying this sends a signal. It does not. It

just registers a handler for a signal.

Comment [CKR2]: Common mistake:

saying this kills a process. kill() sends a

signal. The signal may or may not be

SIGTERM.

Comment [CKR3]: The major
mistake some people made was just

marking what different parts of the code

did. This is way too vague and unclear

about what happens in which process and

when.

3

3. (12 points):

Consider an allocator that uses an implicit free list, where the layout of each memory block is

• 32 bit header, with size and use bits

• the payload

• 32 bit footer, with size and use bits

The size of each memory block is a multiple of eight bytes, including the header and footer. The

low-order bit 0 of the size is set to 1 if the block is allocated, 0 if free.

Implement the code as indicated by the comments. Make use of previous results and the function

size() when possible.

C note: pointer arithmetic is valid only on pointers to actual types, not void *.

void *p = malloc(20);

void *hp = ((int *) p) - 1;

void *fp = ((char *) p) + size(hp) - 8;

int used = (* (int *) hp) & 1;

void *pp = ((char *) hp) - size(((int *) hp) - 1);

/* return the size in the header pointed to by hp */

int size(void *hp) { return (*(int *) hp) & (~7); }

Comment [CKR4]: must cast to get a

value or do pointer arithmetic. Casting

back to void * is automatic.

Way too many people tried to do

arithmetic or dereferencing with void

pointers. You can’t do anything with a

void pointer except pass it around and

cast it to something else.

Comment [CKR5]: note use of char
when dealing with bytes and int when
dealing with whole words

Comment [CKR6]: 4 if you add size
to hp

Comment [CKR7]: just 1 also valid

though that was an oversight on my part.

Comment [CKR8]: shortest way to
specify all 1’s except last 3 bits; also

independent of word size

Common mistakes: dividing by 2 or using

modulo or masking by 1, all of which

return something other than the size.

Another mistake was using a mask like

0xFFFE which would zero out higher

order bits of a large block.

~1 got credit but is less robust than ~7.

4

4. (10 points)

Assume the heap structure of the previous problem. In the diagrams below, each rectangle is a 32-

bit word. On the left, block 2 is free, the rest are in use. Fill in the header values in hex. On the

right, show the heap after block 3 is freed, and coalescing is done.

 0x_11_

1

2

3

4

0x_11_
0x_18_

0x_18_

0x_11_

0x_11_
0x_11_

0x_11_

0x_11_
1

2

3

4

0x_11_
0x_28_

0x_18_

0x_11_

0x_28_

0x_11_

0x_11_

Comment [CKR9]: Most common
mistakes were putting either the number

of words or the number of bits. Address

arithmetic internally is always in bytes.

When numbers were wrong, I gave credit

if headers = footers, used blocks were
odd and free blocks were even, the right

headers and footers changed, and the size

in the new header and footer was the sum

of the sizes in merged blocks.

5

5. (10 points)

Given:

• Memory accesses are to 1-byte words (not 4-byte words).

• Physical addresses are 13 bits wide.

• The cache below:

Clearly label the address diagram below with the fields for the cache offset (CO),cache index

(CI) and cache tag (CT).

Fill in the bits for this address. : 0x0E34

For this address, fill in the table below. Use hex where indicated. Indicate whether a cache miss

occurs. If so, enter “-” for “Byte returned”.

Parameter Value

Cache Offset 0x___0___

Cache Index 0x___5___

Cache Tag 0x___71__

Cache Hit? (Y/N) Yes

Byte returned 0x___0B__

COCOCI CI CICT CT CT CT CT CT CT CT

001 0 10 1 1 1 0 0 0 1

6

Problem 6. (10 points):

You are writing a new 3D game that you hope will earn you fame and fortune. You are currently

working on a function to blank the screen buffer before drawing the next frame. The screen you

are working with is a 640x480 array of pixels. The machine you are working on has a 64 KB

direct mapped cache with 4 byte lines. The C structures you are using are:

struct pixel {

char r;
char g;
char b;
char a;

};

struct pixel buffer[480][640];

register int i, j;
register char *cptr;
register int *iptr;

Assume: sizeof(char) = 1, sizeof(int) = 4, buffer begins at memory address 0, the cache is initially

empty. Variables i, j, cptr, and iptr are stored in registers, so the only memory accesses are to the

array buffer.

A. What percentage of the writes in the following code will miss in the cache?

for (j=0; j < 640; j++) {
 for (i=0; i < 480; i++){
 buffer[i][j].r = 0;
 buffer[i][j].g = 0;
 buffer[i][j].b = 0;
 buffer[i][j].a = 0;
 }
}

Miss rate for writes to buffer: __25__ %

B. What percentage of the writes in the following code will miss in the cache?
char *cptr;
cptr = (char *) buffer;
for (; cptr < (((char *) buffer) + 640 * 480 * 4); cptr++)
*cptr = 0;

Miss rate for writes to buffer: ___25__ %

C. What percentage of the writes in the following code will miss in the cache?
int *iptr;
iptr = (int *) buffer;
for (; iptr < (buffer + 640 * 480); iptr++)
*iptr = 0;

Miss rate for writes to buffer: _100__ %

D. Which code (A, B, or C) should be the fastest? __C___

Comment [CKR10]: because each
initial write causes 4 bytes to be read, so

the next 3 are in-cache.

Comment [CKR11]: the same thing
happens

Comment [CKR12]: each write needs
4 new bytes

Comment [CKR13]: 4 bytes are
stored at once; the number of cache
misses is the same; you can’t compare

rates across different storage sizes.

