EECS 213 Introduction to Computer Systems Midterm Exam

- 1. (16 pts total) Given the C code on the right:
 - a) (6 pts) **gcc** –**S** produces the assembly code below. Explain what each line does.

```
int bitcnt(int n)
{
  unsigned m = 0;
  while ( n > 0 ) {
    m += n & 0x1;
  }
  return m;
}
```

```
pushl %ebp
     movl %esp, %ebp
     subl $16, %esp
     movl $0, -4(\$ebp)
      jmp
           L2
L3:
     movl 8(%ebp), %eax
     andl $1, %eax
     addl %eax, -4(%ebp)
L2:
     cmpl $0, 8(%ebp)
           L3
     jg
     movl -4(%ebp), %eax
     leave
     ret
```

b) (6 pts) gcc -S -O2 produces this assembly code. Explain what each line does.

	pushl	%ebp		
	movl	%esp,	%ebp	
	movl	8 (%ebp	o), %eax	
	testl	%eax,	%eax	
	jg	L5		
	xorl	%eax,	%eax	
	popl	%ebp		
	ret			
L5:				
	jmp	L5		

c) (4 pts) Explain the optimizations made in version (b).

2. (6 pts) strlen() in C returns the length of a string. Its prototype is:

```
typedef unsigned int size_t;
size_t strlen(const char * s);
```

A student who didn't take EECS 213 wrote this code:

```
int is_longer_str(const char *s1, const char *s2)
{
  return strlen(s1) - strlen(s2) > 0;
}
```

Give <u>an example</u> where this will do the wrong thing, <u>explain why</u>, and <u>give a simple fix</u>. Be specific.

3. (13 pts) Fill in the following table for an IEEE floating point representation with 1 sign bit S, 3 exponent bits and 3 fraction bits,. M should be an <u>integer</u> or <u>fraction</u>, e.g., 0, 1, $\frac{3}{4}$. M, E and V should be base 10. V = $(-1)^S * M \cdot 2^E$

Binary	M	E	V
0 000 000			
1 110 110			
			1.75
0 000 011			
	_	_	∞

4. (19 pts) Fill in the table for a 5-bit two's complement integer representation.

Name	Decimal	Binary
_	14	
_	9	
_	-9	
_		0 1100
_		1 0100
TMax		
TMin		
Tmin + Tmax		
TMin + 1		
TMax + 1		
-TMax		
-TMin		

5. (15 pts) Given:

```
typedef struct {
  char c;
  double p;
  float d;
  short s;
  int *i;
} Struct1;
```

A. Use vertical lines and labels to indicate clearly how data would be allocated for each element of a structure of type Struct1 on an IA32 (x86) machine <u>using Linux alignment rules</u>. Crosshatch areas that are allocated but not used.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
+		++		++	+					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++
+		+4			4					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++

- B. How many bytes are allocated for an object of type Struct1?
- C. What alignment is required for an object of type Struct1? I.e., if an object must be aligned on an x-byte boundary, then say what x is.
- D. Do (A) again, with the fields of Struct1 re-ordered to use the least number of bytes. Crosshatch areas that are allocated but not used.

6. (14 pts) Assume the variables a and b are signed integers. Assume two's complement representation. Assume that MAX_INT is the maximum integer, MIN_INT is the minimum integer, and W is word length minus one, e.g., W = 31 for 32-bit integers. Next to each item on the left., write the letter of the code on the right that best matches it.

Description	Choice	Code
а		a. ~(~a (b ^ (MIN_INT + MAX_INT)))
a & b		b. ((a ^ b) & ~b) (~(a ^ b) & b)
a * 7		c. a >> 3
a / 8		d. ~((a >> W) << 1)
(a < 0) ? 1 : -1		e. ((a < 0) ? (a + 7) : a) >> 3
a * 14		f. ((~a & b) a) & ((~a & b) ~b)
a ^ b		g. ~((a (~a + 1)) >> W) & 1
		h. (a << 3) + (a << 2) + (a << 1)
		i. 1 + (a << 3) + ~a