
Fall 2011

Machine-Level Programming II: Control Flow

Today
 Condition codes
 Control flow structures
Next time
 Procedures

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

2

Condition codes

Single bit registers
CF Carry Flag SF Sign Flag
ZF Zero Flag OF Overflow Flag

Implicitly set by arithmetic operations
addl source,destination
C analog: t = a + b
– CF set if carry out from most significant bit

• Used to detect unsigned overflow
– ZF set if t == 0
– SF set if t < 0
– OF set if two’s complement overflow

(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

Not set by leal instruction

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

3

Setting condition codes

Explicit setting by compare instruction
cmpl Src2,Src1

cmpl b,a like computing a-b without setting
destination

– CF set if carry out from most significant bit
• Used for unsigned comparisons

– ZF set if a == b
– SF set if (a-b) < 0
– OF set if two’s complement overflow

(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)
>0)

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

4

Setting condition codes

Explicit setting by test instruction
testl Src2,Src1
– Sets condition codes based on value of Src1 & Src2

• Useful to have one of the operands be a mask

– testl b,a like computing a&b without setting
destination

– ZF set when a&b == 0
– SF set when a&b < 0

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

5

Reading condition codes

SetX Instructions
– Set single byte based on combinations

of condition codes
– One of 8 addressable byte registers

• Embedded within first 4 integer registers
• Does not alter remaining 3 bytes
• Typically use movzbl to finish job

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

%al%ah

%dl%dh

%cl%ch

%bl%bh

int gt (int x, int y)
{
 return x > y;
}

movl 12(%ebp),%eax # eax = y
cmpl %eax,8(%ebp) # Compare x : y
setg %al # al = x > y
movzbl %al,%eax # Zero rest of %eax

Note
inverted
ordering!

Body

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

Reading condition codes

SetX Instructions
– Set single byte based on combinations of condition codes

Monday, October 10, 2011

Checkpoint

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/06-MachLevelProgII-comparison-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/06-MachLevelProgII-comparison-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

8

Jumping

jX Instructions
– Jump to different part of code depending on condition codes

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

Conditional branch example

int max(int x, int y)
{
 if (x > y)
 return x;
 else
 return y;
}

_max:
 pushl %ebp
 movl %esp,%ebp

 movl 8(%ebp),%edx
 movl 12(%ebp),%eax
 cmpl %eax,%edx
 jle L9
 movl %edx,%eax
L9:

 movl %ebp,%esp
 popl %ebp
 ret

Body

Set
Up

Finish

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

Conditional branch example

 movl 8(%ebp),%edx # edx = x
 movl 12(%ebp),%eax # eax = y
 cmpl %eax,%edx # x : y
 jle L9 # if <= goto L9
 movl %edx,%eax # eax = x
L9: # Done:

int goto_max(int x, int y)
{
 int rval = y;
 int ok = (x <= y);
 if (ok)
 goto done;
 rval = x;
done:
 return rval;
}

Skipped when x ≤ y

C allows “goto” as means of
transferring control
– Closer to machine-level

programming style
Generally considered bad
coding style

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

11

C Code
int fact_do
 (int x)
{
 int result = 1;
 do {
 result *= x;
 x = x-1;
 } while (x > 1);
 return result;
}

Goto Version
int fact_goto(int x)
{
 int result = 1;
loop:
 result *= x;
 x = x-1;
 if (x > 1)
 goto loop;
 return result;
}

“Do-While” loop example

Use backward branch to continue looping
Only take branch when “while” condition holds

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

12

Goto Version
int fact_goto
 (int x)
{
 int result = 1;
loop:
 result *= x;
 x = x-1;
 if (x > 1)
 goto loop;
 return result;
}

“Do-While” loop compilation

Registers
%edx x
%eax result

_fact_goto:
 pushl %ebp # Setup
 movl %esp,%ebp # Setup
 movl $1,%eax # eax = 1
 movl 8(%ebp),%edx # edx = x

L11:
 imull %edx,%eax # result *= x
 decl %edx # x--
 cmpl $1,%edx # Compare x : 1
 jg L11 # if > goto loop

 movl %ebp,%esp # Finish
 popl %ebp # Finish
 ret # Finish

Assembly

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

13

C Code
do
 Body
 while (Test);

Goto Version
loop:
 Body
 if (Test)
 goto loop

General “Do-While” translation

Body can be any C statement
– Typically compound statement:

Test is expression returning integer
= 0 interpreted as false ≠0 interpreted as true

{
 Statement1;
 Statement2;
 …
 Statementn;
}

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

14

C Code
int fact_while
 (int x)
{
 int result = 1;
 while (x > 1) {
 result *= x;
 x = x-1;
 };
 return result;
}

First Goto Version
int fact_while_goto
 (int x)
{
 int result = 1;
loop:
 if (!(x > 1))
 goto done;
 result *= x;
 x = x-1;
 goto loop;
done:
 return result;
}

“While” loop example #1

Is this code equivalent to the do-while version?
Must jump out of loop if test fails

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

15

int fact_while_goto2
 (int x)
{
 int result = 1;
 if (!(x > 1))
 goto done;
loop:
 result *= x;
 x = x-1;
 if (x > 1)
 goto loop;
done:
 return result;
}

Actual “While” loop translation

Uses same inner loop as do-
while version
Guards loop entry with extra
test

int fact_while
 (int x)
{
 int result = 1;
 while (x > 1) {
 result *= x;
 x = x-1;
 };
 return result;
}

C Code Second Goto Version

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

16

C Code
while (Test)
 Body

Do-While Version
 if (!Test)
 goto done;
 do
 Body
 while(Test);
done:

General “While” translation

Goto Version
 if (!Test)
 goto done;
loop:
 Body
 if (Test)
 goto loop;
done:

Monday, October 10, 2011

Checkpoint

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/06-MachLevelProgII-while-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/06-MachLevelProgII-while-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

18

“For” loop example

Algorithm
– Exploit property that p = p0 + 2p1 + 4p2 + … 2n–1pn–1

– Gives: xp = z0 · z1 2 · (z2 2) 2 · … · (…((zn –1
2) 2)…) 2

zi = 1 when pi = 0

zi = x when pi = 1

– Complexity O(log p)

/* Compute x raised to nonnegative power p */
int ipwr_for(int x, unsigned p) {
 int result;
 for (result = 1; p != 0; p = p>>1) {
 if (p & 0x1)
 result *= x;
 x = x*x;
 }
 return result;
}

n–1 times

Example

310! = 32 * 38

! = 32 * ((32) 2) 2

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

19

ipwr computation

/* Compute x raised to nonnegative power p */
int ipwr_for(int x, unsigned p) {
int result;
 for (result = 1; p != 0; p = p>>1) {
 if (p & 0x1)
 result *= x;
 x = x*x;
 }
 return result;
}

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

20

“For” loop example

for (Init; Test; Update)

 Body

 int result;
 for (result = 1;
 p != 0;
 p = p>>1) {
 if (p & 0x1)
 result *= x;
 x = x*x;
 }

General Form

Init
result = 1

Test
p != 0

Update
p = p >> 1

Body
 {
 if (p & 0x1)
 result *= x;
 x = x*x;
 }

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

21

“For”→ “While”

for (Init; Test; Update)

 Body

Init;
while (Test) {
 Body
 Update ;
}

Goto Version
 Init;
 if (!Test)
 goto done;
loop:
 Body
 Update ;
 if (Test)
 goto loop;
done:

While VersionFor Version

Do-While Version
 Init;
 if (!Test)
 goto done;
 do {
 Body
 Update ;
 } while (Test)
done:

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

22

“For” loop compilation

Init
result = 1

Test
p != 0

Update
p = p >> 1

Body
 {
 if (p & 0x1)
 result *= x;
 x = x*x;
 }

Goto Version
 Init;
 if (!Test)
 goto done;
loop:
 Body
 Update ;
 if (Test)
 goto loop;
done:

 result = 1;
 if (p == 0)
 goto done;
loop:
 if (p & 0x1)
 result *= x;
 x = x*x;
 p = p >> 1;
 if (p != 0)
 goto loop;
done:

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

23

Switch statements

Implementation options
– Series of conditionals

• Good if few cases
• Slow if many

– Jump table
• Lookup branch target
• Avoids conditionals
• Possible when cases are

small integer constants
– GCC

• Picks one based on case
structure

– Bug in example code
• No default given

typedef enum
 {ADD, MULT, MINUS, DIV, MOD, BAD}
 op_type;

char unparse_symbol(op_type op)
{
 switch (op) {
 case ADD :
 return '+';
 case MULT:
 return '*';
 case MINUS:
 return '-';
 case DIV:
 return '/';
 case MOD:
 return '%';
 case BAD:
 return '?';
 }
}

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

24

Jump table structure

Code Block
0

Targ0:

Code Block
1

Targ1:

Code Block
2

Targ2:

Code Block
n–1

Targn-1:

•
•
•

Targ0

Targ1

Targ2

Targn-1

•
•
•

jtab:

target = JTab[op];
goto *target;

switch(op) {
 case val_0:
 Block 0
 case val_1:
 Block 1
 • • •
 case val_n-1:
 Block n–1
}

Switch form

Approx. translation

Jump table Jump targets

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

25

Switch statement example

Branching possibilities

Setup:

unparse_symbol:
 pushl %ebp # Setup
 movl %esp,%ebp # Setup
 movl 8(%ebp),%eax # eax = op
 cmpl $5,%eax # Compare op : 5
 ja .L49 # If > goto done
 jmp *.L57(,%eax,4) # goto Table[op]

Enumerated values
ADD 0
MULT 1
MINUS 2
DIV 3
MOD 4
BAD 5

typedef enum
 {ADD, MULT, MINUS, DIV, MOD, BAD}
 op_type;

char unparse_symbol(op_type op)
{
 switch (op) {
 • • •
 }
}

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

26

Assembly setup explanation

Symbolic labels
– Labels of form .LXX translated into addresses by assembler

Table structure
– Each target requires 4 bytes
– Base address at .L57

Jumping
jmp .L49

– Jump target is denoted by label .L49
jmp *.L57(,%eax,4)

– Start of jump table denoted by label .L57
– Register %eax holds op
– Must scale by factor of 4 to get offset into table
– Fetch target from effective Address .L57 + op*4

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

27

Jump table

Enumerated values
ADD 0
MULT 1
MINUS 2
DIV 3
MOD 4
BAD 5

.section .rodata
 .align 4
.L57:
 .long .L51 #Op = 0
 .long .L52 #Op = 1
 .long .L53 #Op = 2
 .long .L54 #Op = 3
 .long .L55 #Op = 4
 .long .L56 #Op = 5

Table contents
.L51:
 movl $43,%eax # ’+’
 jmp .L49
.L52:
 movl $42,%eax # ’*’
 jmp .L49
.L53:
 movl $45,%eax # ’-’
 jmp .L49
.L54:
 movl $47,%eax # ’/’
 jmp .L49
.L55:
 movl $37,%eax # ’%’
 jmp .L49
.L56:
 movl $63,%eax # ’?’
 # Fall Through to .L49

Targets & completion

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

28

Switch statement completion

Puzzle
– What value returned when op is invalid?

Answer
– Register %eax set to op at beginning of procedure
– This becomes the returned value

Advantage of Jump Table
– Can do k-way branch in O(1) operations

.L49: # Done:
 movl %ebp,%esp # Finish
 popl %ebp # Finish
 ret # Finish

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

29

Object code

Setup
– Label .L49 becomes address 0x804875c
– Label .L57 becomes address 0x8048bc0

 08048718 <unparse_symbol>:
 8048718: 55 pushl %ebp
 8048719: 89 e5 movl %esp,%ebp
 804871b: 8b 45 08 movl 0x8(%ebp),%eax
 804871e: 83 f8 05 cmpl $0x5,%eax
 8048721: 77 39 ja 804875c <unparse_symbol+0x44>
 8048723: ff 24 85 c0 8b jmp *0x8048bc0(,%eax,4)

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

30

Object code

Jump table
– Doesn’t show up in disassembled code
– Can inspect using GDB
gdb code-examples
(gdb) x/6xw 0x8048bc0

• Examine 6 hexadecimal format “words” (4-bytes each)
• Use command “help x” to get format documentation

0x8048bc0 <_fini+32>:

 0x08048730

 0x08048737
 0x08048740

 0x08048747
 0x08048750

 0x08048757

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

31

Extracting jump table from binary

Jump table stored in read only data segment (.rodata)
– Various fixed values needed by your code

Can examine with objdump (otool on Mac’s)
objdump code-examples –s --section=.rodata

– Show everything in indicated segment.

Hard to read
– Jump table entries shown with reversed byte ordering
– E.g., 30870408 really means 0x08048730

Contents of section .rodata:
 8048bc0 30870408 37870408 40870408 47870408 0...7...@...G...
 8048bd0 50870408 57870408 46616374 28256429 P...W...Fact(%d)
 8048be0 203d2025 6c640a00 43686172 203d2025 = %ld..Char = %
 …

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

32

Disassembled targets

 movl %esi,%esi does nothing
Inserted to align instructions for better cache
performance

 8048730: b8 2b 00 00 00 movl $0x2b,%eax
 8048735: eb 25 jmp 804875c <unparse_symbol+0x44>
 8048737: b8 2a 00 00 00 movl $0x2a,%eax
 804873c: eb 1e jmp 804875c <unparse_symbol+0x44>
 804873e: 89 f6 movl %esi,%esi
 8048740: b8 2d 00 00 00 movl $0x2d,%eax
 8048745: eb 15 jmp 804875c <unparse_symbol+0x44>
 8048747: b8 2f 00 00 00 movl $0x2f,%eax
 804874c: eb 0e jmp 804875c <unparse_symbol+0x44>
 804874e: 89 f6 movl %esi,%esi
 8048750: b8 25 00 00 00 movl $0x25,%eax
 8048755: eb 05 jmp 804875c <unparse_symbol+0x44>
 8048757: b8 3f 00 00 00 movl $0x3f,%eax

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

33

Matching disassembled targets

 8048730: b8 2b 00 00 00 movl
 8048735: eb 25 jmp
 8048737: b8 2a 00 00 00 movl
 804873c: eb 1e jmp
 804873e: 89 f6 movl
 8048740: b8 2d 00 00 00 movl
 8048745: eb 15 jmp
 8048747: b8 2f 00 00 00 movl
 804874c: eb 0e jmp
 804874e: 89 f6 movl
 8048750: b8 25 00 00 00 movl
 8048755: eb 05 jmp
 8048757: b8 3f 00 00 00 movl

Entry
0x08048730

0x08048737
0x08048740
0x08048747
0x08048750
0x08048757

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

34

Sparse switch example

Not practical to use
jump table
– Would require 1000 entries

Obvious translation into
if-then-else would have
max. of 9 tests

/* Return x/111 if x is
 multiple && <= 999.
 -1 otherwise */
int div111(int x)
{
 switch(x) {
 case 0: return 0;
 case 111: return 1;
 case 222: return 2;
 case 333: return 3;
 case 444: return 4;
 case 555: return 5;
 case 666: return 6;
 case 777: return 7;
 case 888: return 8;
 case 999: return 9;
 default: return -1;
 }
}

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

35

Sparse switch code

Compares x to possible case values
Jumps different places depending on outcomes

 movl 8(%ebp),%eax # get x
 cmpl $444,%eax # x:444
 je L8
 jg L16
 cmpl $111,%eax # x:111
 je L5
 jg L17
 testl %eax,%eax # x:0
 je L4
 jmp L14

 . . .

 . . .
L5:
 movl $1,%eax
 jmp L19
L6:
 movl $2,%eax
 jmp L19
L7:
 movl $3,%eax
 jmp L19
L8:
 movl $4,%eax
 jmp L19
 . . .

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

36

Sparse switch code structure

– Organizes cases as binary tree
– Logarithmic performance

-1

-1 -1-1

444

111 777

0 222 555 888

333 666 999
0

1

4

7

5 8

9

2

3 6

<

≠ =

>
=

< >
=

< >
=

< >
=

≠ = ≠ = ≠ =

≠= ≠=

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

37

Summarizing

C Control
– if-then-else, do-while, while, switch

Assembler control
– Jump & conditional jump

Compiler
– Must generate assembly code to implement more complex

control
Standard techniques
– All loops → do-while form
– Large switch statements use jump tables

Conditions in CISC
– Machines generally have condition code registers

Conditions in RISC
– Use general registers
– Special comparison instructions

Monday, October 10, 2011

