
Fall 2011

Machine-Level Programming II: Control Flow

Today
 Condition codes
 Control flow structures
Next time
 Procedures
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Condition codes

Single bit registers
CF Carry Flag SF Sign Flag
ZF Zero Flag OF Overflow Flag

Implicitly set by arithmetic operations
addl source,destination  
C analog: t = a + b
– CF set if carry out from most significant bit

• Used to detect unsigned overflow
– ZF set if t == 0
– SF set if t < 0
– OF set if two’s complement overflow

(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

Not set by leal instruction
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Setting condition codes

Explicit setting by compare instruction
cmpl Src2,Src1

cmpl b,a like computing a-b without setting 
destination

– CF set if carry out from most significant bit
• Used for unsigned comparisons

– ZF set if a == b
– SF set if (a-b) < 0
– OF set if two’s complement overflow

(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)
>0)
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Setting condition codes

Explicit setting by test instruction
testl Src2,Src1
– Sets condition codes based on value of Src1 & Src2

• Useful to have one of the operands be a mask

–  testl b,a like computing a&b without setting 
destination 

– ZF set when a&b == 0
– SF set when a&b < 0
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Reading condition codes

SetX Instructions
– Set single byte based on combinations 

of condition codes
– One of 8 addressable byte registers

• Embedded within first 4 integer registers
• Does not alter remaining 3 bytes
• Typically use movzbl to finish job

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

%al%ah

%dl%dh

%cl%ch

%bl%bh

int gt (int x, int y)
{
  return x > y;
}

movl 12(%ebp),%eax # eax = y
cmpl %eax,8(%ebp) # Compare x : y
setg %al  # al = x > y
movzbl %al,%eax # Zero rest of %eax

Note 
inverted 
ordering!

Body
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Reading condition codes

SetX Instructions
– Set single byte based on combinations of condition codes
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Jumping

jX Instructions
– Jump to different part of code depending on condition codes
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Conditional branch example

int max(int x, int y)
{
  if (x > y)
    return x;
  else
    return y;
}

_max:
 pushl %ebp
 movl %esp,%ebp

 movl 8(%ebp),%edx
 movl 12(%ebp),%eax
 cmpl %eax,%edx
 jle L9
 movl %edx,%eax
L9:

 movl %ebp,%esp
 popl %ebp
 ret

Body

Set
Up

Finish
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Conditional branch example

 movl 8(%ebp),%edx # edx = x
 movl 12(%ebp),%eax # eax = y
 cmpl %eax,%edx  # x : y
 jle L9  # if <= goto L9
 movl %edx,%eax  # eax = x
L9:    # Done:

int goto_max(int x, int y)
{
  int rval = y;
  int ok = (x <= y);
  if (ok)
    goto done;
  rval = x;
done:
  return rval;
}

Skipped when x ≤ y

C allows “goto” as means of 
transferring control
– Closer to machine-level 

programming style
Generally considered bad 
coding style
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C Code
int fact_do
  (int x)
{
  int result = 1;
  do {
    result *= x;
    x = x-1;
  } while (x > 1);
  return result;
}

Goto Version
int fact_goto(int x)
{
  int result = 1;
loop:
  result *= x;
  x = x-1;
  if (x > 1)
    goto loop;
  return result;
}

“Do-While” loop example

Use backward branch to continue looping
Only take branch when “while” condition holds
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Goto Version
int fact_goto
  (int x)
{
  int result = 1;
loop:
  result *= x;
  x = x-1;
  if (x > 1)
    goto loop;
  return result;
}

“Do-While” loop compilation

Registers
%edx x
%eax result

_fact_goto:
 pushl %ebp # Setup
 movl %esp,%ebp # Setup
 movl $1,%eax # eax = 1
 movl 8(%ebp),%edx # edx = x

L11:
 imull %edx,%eax # result *= x
 decl %edx # x--
 cmpl $1,%edx # Compare x : 1
 jg L11 # if > goto loop

 movl %ebp,%esp # Finish
 popl %ebp # Finish
 ret # Finish

Assembly
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C Code
do 
  Body
  while (Test);

Goto Version
loop:
  Body
  if (Test)
    goto loop

General “Do-While” translation

Body can be any C statement
– Typically compound statement:

Test is expression returning integer
= 0 interpreted as false ≠0 interpreted as true

{
  Statement1;
  Statement2;
    …
  Statementn;
}
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C Code
int fact_while
  (int x)
{
  int result = 1;
  while (x > 1) {
    result *= x;
    x = x-1;
  };
  return result;
}

First Goto Version
int fact_while_goto
  (int x)
{
  int result = 1;
loop:
  if (!(x > 1))
    goto done;  
  result *= x;
  x = x-1;
  goto loop;
done:
  return result;
}

“While” loop example #1

Is this code equivalent to the do-while version?
Must jump out of loop if test fails
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int fact_while_goto2
  (int x)
{
  int result = 1;
  if (!(x > 1))
    goto done;  
loop:
  result *= x;
  x = x-1;
  if (x > 1)
    goto loop;
done:
  return result;
}

Actual “While” loop translation

Uses same inner loop as do-
while version
Guards loop entry with extra 
test

int fact_while
  (int x)
{
  int result = 1;
  while (x > 1) {
    result *= x;
    x = x-1;
  };
  return result;
}

C Code Second Goto Version
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C Code
while (Test)
  Body

Do-While Version
  if (!Test) 
    goto done;
  do
    Body
    while(Test);
done:

General “While” translation

Goto Version
  if (!Test)
    goto done;
loop:
  Body
  if (Test)
    goto loop;
done:
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“For” loop example

Algorithm
– Exploit property that p = p0 + 2p1 + 4p2 + … 2n–1pn–1

– Gives: xp = z0 · z1 2 · (z2 2) 2 · … · (…((zn –1
2) 2 )…) 2

zi = 1  when pi = 0

zi = x  when pi = 1

– Complexity O(log p)

/* Compute x raised to nonnegative power p */
int ipwr_for(int x, unsigned p) {
  int result;
  for (result = 1; p != 0; p = p>>1) {
    if (p & 0x1)
      result *= x;
    x = x*x;
  }
  return result;
}

n–1  times

Example

310! = 32 * 38

!  = 32 * ((32) 2) 2
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ipwr computation

/* Compute x raised to nonnegative power p */
int ipwr_for(int x, unsigned p) {
int result;
  for (result = 1; p != 0; p = p>>1) {
    if (p & 0x1)
      result *= x;
    x = x*x;
  }
  return result;
}
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“For” loop example

for (Init; Test; Update )

    Body

  int result;
  for (result = 1;
       p != 0;
       p = p>>1) {
    if (p & 0x1)
      result *= x;
    x = x*x;
  }

General Form

Init
result = 1

Test
p != 0

Update
p = p >> 1

Body
  {
    if (p & 0x1)
      result *= x;
    x = x*x;
  }
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“For”→ “While”

for (Init; Test; Update )

    Body

Init;
while (Test ) {
    Body
    Update ;
}

Goto Version
  Init;
  if (!Test)
    goto done;
loop:
  Body
  Update ;
  if (Test)
    goto loop;
done:

While VersionFor Version

Do-While Version
  Init;
  if (!Test)
    goto done;
  do {
    Body
    Update ;
  } while (Test)
done:
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“For” loop compilation

Init
result = 1

Test
p != 0

Update
p = p >> 1

Body
  {
    if (p & 0x1)
      result *= x;
    x = x*x;
  }

Goto Version
  Init;
  if (!Test)
    goto done;
loop:
  Body
  Update ;
  if (Test)
    goto loop;
done:

  result = 1;
  if (p == 0)
    goto done;
loop:
  if (p & 0x1)
    result *= x;
  x = x*x;
  p = p >> 1;
  if (p != 0)
    goto loop;
done:
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Switch statements

Implementation options
– Series of conditionals

• Good if few cases
• Slow if many

– Jump table
• Lookup branch target
• Avoids conditionals
• Possible when cases are 

small integer constants
– GCC

• Picks one based on case 
structure

– Bug in example code
• No default given

typedef enum
 {ADD, MULT, MINUS, DIV, MOD, BAD} 
    op_type;

char unparse_symbol(op_type op)
{
  switch (op) {
  case ADD :
    return '+';
  case MULT:
    return '*';
  case MINUS:
    return '-';
  case DIV:
    return '/';
  case MOD:
    return '%';
  case BAD:
    return '?';
  }
}
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Jump table structure

Code Block
0

Targ0:

Code Block
1

Targ1:

Code Block
2

Targ2:

Code Block
n–1

Targn-1:

•
•
•

Targ0

Targ1

Targ2

Targn-1

•
•
•

jtab:

target = JTab[op];
goto *target;

switch(op) {
  case val_0:
    Block 0
  case val_1:
    Block 1
    • • •
  case val_n-1:
    Block n–1
}

Switch form

Approx. translation

Jump table Jump targets
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Switch statement example

Branching possibilities

Setup:

unparse_symbol:
 pushl %ebp # Setup
 movl %esp,%ebp # Setup
 movl 8(%ebp),%eax # eax = op
 cmpl $5,%eax # Compare op : 5
  ja .L49 # If > goto done
 jmp *.L57(,%eax,4) # goto Table[op]

Enumerated values
ADD 0
MULT 1
MINUS 2
DIV 3
MOD 4
BAD 5

typedef enum
  {ADD, MULT, MINUS, DIV, MOD, BAD}
    op_type;

char unparse_symbol(op_type op)
{
  switch (op) {
    • • •
  }
}
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Assembly setup explanation

Symbolic labels
– Labels of form .LXX translated into addresses by assembler

Table structure
– Each target requires 4 bytes
– Base address at .L57

Jumping
jmp .L49

– Jump target is denoted by label .L49
jmp *.L57(,%eax,4)

– Start of jump table denoted by label .L57
– Register %eax holds op
– Must scale by factor of 4 to get offset into table
– Fetch target from effective Address .L57 + op*4

Monday, October 10, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

27

Jump table

Enumerated values
ADD 0
MULT 1
MINUS 2
DIV 3
MOD 4
BAD 5

.section .rodata
   .align 4
.L57:
 .long .L51 #Op = 0
 .long .L52 #Op = 1
 .long .L53 #Op = 2
 .long .L54 #Op = 3
 .long .L55 #Op = 4
 .long .L56 #Op = 5

Table contents
.L51:
 movl $43,%eax # ’+’
 jmp .L49
.L52:
 movl $42,%eax # ’*’
 jmp .L49
.L53:
 movl $45,%eax # ’-’
 jmp .L49
.L54:
 movl $47,%eax # ’/’
 jmp .L49
.L55:
 movl $37,%eax # ’%’
 jmp .L49
.L56:
 movl $63,%eax # ’?’
 # Fall Through to .L49

Targets & completion
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Switch statement completion 

Puzzle
– What value returned when op is invalid?

Answer
– Register %eax set to op at beginning of procedure
– This becomes the returned value

Advantage of Jump Table
– Can do k-way branch in O(1) operations

.L49: # Done:
 movl %ebp,%esp # Finish
 popl %ebp # Finish
 ret # Finish

Monday, October 10, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

29

Object code

Setup
– Label .L49 becomes address 0x804875c
– Label .L57 becomes address 0x8048bc0

 08048718 <unparse_symbol>:
 8048718: 55             pushl  %ebp
 8048719: 89 e5          movl   %esp,%ebp
 804871b: 8b 45 08       movl   0x8(%ebp),%eax
 804871e: 83 f8 05       cmpl   $0x5,%eax
 8048721: 77 39          ja     804875c <unparse_symbol+0x44>
 8048723: ff 24 85 c0 8b jmp    *0x8048bc0(,%eax,4)
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Object code

Jump table
– Doesn’t show up in disassembled code
– Can inspect using GDB
gdb code-examples
(gdb) x/6xw 0x8048bc0

• Examine 6 hexadecimal format “words” (4-bytes each)
• Use command “help x” to get format documentation

0x8048bc0 <_fini+32>: 

  0x08048730 

  0x08048737  
  0x08048740  

  0x08048747
  0x08048750 

  0x08048757
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Extracting jump table from binary

Jump table stored in read only data segment (.rodata)
– Various fixed values needed by your code

Can examine with objdump (otool on Mac’s)
objdump code-examples –s --section=.rodata

– Show everything in indicated segment.

Hard to read
– Jump table entries shown with reversed byte ordering
– E.g., 30870408 really means 0x08048730

Contents of section .rodata:
 8048bc0 30870408 37870408 40870408 47870408  0...7...@...G...
 8048bd0 50870408 57870408 46616374 28256429  P...W...Fact(%d)
 8048be0 203d2025 6c640a00 43686172 203d2025   = %ld..Char = %
 …

Monday, October 10, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

32

Disassembled targets

 movl %esi,%esi does nothing
Inserted to align instructions for better cache 
performance

 8048730: b8 2b 00 00 00  movl   $0x2b,%eax
 8048735: eb 25           jmp    804875c <unparse_symbol+0x44>
 8048737: b8 2a 00 00 00  movl   $0x2a,%eax
 804873c: eb 1e           jmp    804875c <unparse_symbol+0x44>
 804873e: 89 f6           movl   %esi,%esi
 8048740: b8 2d 00 00 00  movl   $0x2d,%eax
 8048745: eb 15           jmp    804875c <unparse_symbol+0x44>
 8048747: b8 2f 00 00 00  movl   $0x2f,%eax
 804874c: eb 0e           jmp    804875c <unparse_symbol+0x44>
 804874e: 89 f6           movl   %esi,%esi
 8048750: b8 25 00 00 00  movl   $0x25,%eax
 8048755: eb 05           jmp    804875c <unparse_symbol+0x44>
 8048757: b8 3f 00 00 00  movl   $0x3f,%eax
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Matching disassembled targets

 8048730: b8 2b 00 00 00  movl
 8048735: eb 25           jmp
 8048737: b8 2a 00 00 00  movl
 804873c: eb 1e           jmp
 804873e: 89 f6           movl
 8048740: b8 2d 00 00 00  movl
 8048745: eb 15           jmp
 8048747: b8 2f 00 00 00  movl
 804874c: eb 0e           jmp
 804874e: 89 f6           movl
 8048750: b8 25 00 00 00  movl
 8048755: eb 05           jmp
 8048757: b8 3f 00 00 00  movl

Entry
0x08048730 

0x08048737  
0x08048740  
0x08048747
0x08048750 
0x08048757
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Sparse switch example

Not practical to use 
jump table
– Would require 1000 entries

Obvious translation into 
if-then-else would have 
max. of 9 tests

/* Return x/111 if x is
   multiple && <= 999.  
   -1 otherwise */
int div111(int x)
{
  switch(x) {
  case   0: return 0;
  case 111: return 1;
  case 222: return 2;
  case 333: return 3;
  case 444: return 4;
  case 555: return 5;
  case 666: return 6;
  case 777: return 7;
  case 888: return 8;
  case 999: return 9;
  default: return -1;
  }
}
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Sparse switch code

Compares x to possible case values
Jumps different places depending on outcomes

 movl 8(%ebp),%eax # get x
 cmpl $444,%eax # x:444
 je L8
 jg L16
 cmpl $111,%eax # x:111
 je L5
 jg L17
 testl %eax,%eax # x:0
 je L4
 jmp L14

 . . .

 . . .
L5:
 movl $1,%eax
 jmp L19
L6:
 movl $2,%eax
 jmp L19
L7:
 movl $3,%eax
 jmp L19
L8:
 movl $4,%eax
 jmp L19
 . . .
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Sparse switch code structure

– Organizes cases as binary tree
– Logarithmic performance

-1

-1 -1-1
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111 777

0 222 555 888
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Summarizing

C Control
– if-then-else, do-while, while, switch

Assembler control
– Jump & conditional jump

Compiler
– Must generate assembly code to implement more complex 

control
Standard techniques
– All loops → do-while form
– Large switch statements use jump tables

Conditions in CISC
– Machines generally have condition code registers

Conditions in RISC
– Use general registers
– Special comparison instructions
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