
Chris Riesbeck, Fall 2011

Machine-Level Programming III - Procedures

Today
 IA32 stack discipline
 Register saving conventions
 Creating pointers to local variables
Next time
 Structured data
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IA32 Stack

Region of memory managed 
with stack discipline
Grows toward lower addresses
Register %esp indicates 
lowest  stack address
– address of top element

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”
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IA32/Linux stack frame

Current stack frame (“Top” to Bottom)
– Parameters for function about to call

• “Argument build”
– Local variables

• If can’t keep in registers
– Saved register context
– Old frame pointer

Caller stack frame
– Return address

• Pushed by call instruction

– Arguments for this call

Stack Pointer
(%esp)

Frame Pointer
(%ebp)

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %ebp

Arguments

Caller
Frame

Sunday, October 16, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

4

IA32 Stack pushing

Pushing
– pushl Src
– Fetch operand at Src
– Decrement %esp by 4
– Write operand at 

address given by %esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Stack
Pointer
%esp -4
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IA32 Stack popping

Popping
– popl Dest
– Read operand at address 

given by %esp
– Increment %esp by 4
– Write to Dest

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

+4
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%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

555

213

Stack operation examples

0x108

0x10c

0x110

555

213

123

0x108

0x108

0x10c

0x110

213

123

0x104

213
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%esp

%eax

%edx

%esp

%eax

%edx
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Stack operation examples

0x108
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Procedure control flow: call

Use stack to support procedure call and return
Procedure call
call label  Push return address on stack; Jump to label
call *Operand   Indirect call/jump

Return address value
– Address of instruction immediately following call
– Example from disassembly
 804854e: e8 3d 06 00 00  call   8048b90 
<main>

 8048553: 50              pushl  %eax
• Return address = 0x8048553
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Procedure control flow: return

Procedure return
– leave  Prepare stack for return; equivalent to

• movl %ebp, %esp
• popl %ebp

– ret  Pop address from stack; Jump to address
           (after stack is ready)
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%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

123

Procedure call example

0x108

0x10c

0x110

123

0x108

804854e: e8 3d 06 00 00  call   8048b90 <main>
8048553: 50              pushl  %eax

%eip is program counter
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%esp

%eip
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Stack-based languages

Languages that support recursion
– e.g., C, Pascal, Java
– Code must be “reentrant”

• Multiple simultaneous instantiations of single procedure
– Need some place to store state of each instantiation

• Arguments
• Local variables
• Return pointer

Stack discipline
– State for given procedure needed for limited time

• From when called to when return
– Callee returns before caller does

Stack allocated in frames
– state for single procedure instantiation
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Call chain example

Code structure
yoo(…)
{

•
•
who();
•
•

}

who(…)
{

• • •
amI();
• • •
amI();
• • •

}
amI(…)
{

•
•
amI();
•
•

}

yoo

who

amI

amI

amI

Call Chain

amI

Procedure amI recursive
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Stack
Pointer
%esp

yoo

who

proc

Frame
Pointer
%ebp

Stack
“Top”

Stack frames

Contents
– Local variables
– Return information
– Temporary space

Management
– Space allocated when enter 

procedure
• “Set-up” code

– Deallocated when return
• “Finish” code

Pointers
– Stack pointer %esp indicates 

stack top
– Frame pointer %ebp indicates 

start of current frame

amI
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Stack
Pointer
%esp

yoo

•
•
•Frame

Pointer
%ebp

Stack operation

yoo

Call Chain
yoo(…)
{

•
•
who();
•
•

}
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Stack
Pointer
%esp

yoo

who

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

}
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Stack
Pointer
%esp
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•
•
•

Frame
Pointer
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Stack operation
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Call Chain
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{

•
•
amI();
•
•
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Stack
Pointer
%esp
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•
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Call Chain
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{
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•
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Stack Pointer %esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI

amI

amI

amI
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Stack
Pointer
%esp
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•
•

Frame
Pointer
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Stack operation
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Call Chain
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{
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•
•
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Stack
Pointer
%esp
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•
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Call Chain
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•
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Stack
Pointer
%esp

yoo

who

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
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• • •

} amI

amI

amI
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Stack
Pointer
%esp

yoo
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•
•
•
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yoo
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Call Chain
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{

•
•
•
•

}
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Stack
Pointer
%esp

yoo

who

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

} amI

amI

amI

amI
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yoo(…)
{

•
•
who();
•
•

}

Stack
Pointer
%esp

yoo

•
•
•Frame

Pointer
%ebp

Stack operation

yoo

who

Call Chain

amI

amI

amI

amI
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IA32/Linux stack frame

Current stack frame (“Top” to Bottom)
– Parameters for function about to call

• “Argument build”
– Local variables

• If can’t keep in registers
– Saved register context
– Old frame pointer

Caller stack frame
– Return address

• Pushed by call instruction

– Arguments for this call

Stack Pointer
(%esp)

Frame Pointer
(%ebp)

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %ebp

Arguments

Caller
Frame
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Revisiting swap

void swap(int *xp, int *yp) 
{
  int t0 = *xp;
  int t1 = *yp;
  *xp = t1;
  *yp = t0;
}

int zip1 = 15213;
int zip2 = 91125;

void call_swap()
{
  swap(&zip1, &zip2);
}

call_swap:
 • • •
 pushl $zip2 # Global Var
 pushl $zip1 # Global Var
 call swap
 • • •

&zip2

&zip1

Rtn adr %esp

Resulting
Stack

•
•
•

Calling swap from call_swap
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Revisiting swap

void swap(int *xp, int *yp) 
{
  int t0 = *xp;
  int t1 = *yp;
  *xp = t1;
  *yp = t0;
}

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx
 
 movl 12(%ebp),%ecx
 movl 8(%ebp),%edx
 movl (%ecx),%eax
 movl (%edx),%ebx
 movl %eax,(%edx)
 movl %ebx,(%ecx)

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

Body

Set
Up

Finish
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swap Setup #1

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Resulting
Stack

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp
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swap Setup #1

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Resulting
Stack

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

yp

xp

Rtn adr
Old %ebp

%ebp
•
•
•

%esp
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swap Setup #2

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

yp

xp

Rtn adr
Old %ebp %ebp

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

%esp
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swap Setup #3

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

yp

xp

Rtn adr
Old %ebp %ebp

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Old %ebx %esp
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Effect of swap setup

yp

xp

Rtn adr
Old %ebp %ebp 0 

 4 

 8 

12 

Offset
(relative to %ebp)

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Old %ebx %esp

 movl 12(%ebp),%ecx # get yp
 movl 8(%ebp),%edx  # get xp
 . . .

Body
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swap Finish #1

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr
Old %ebp %ebp 0 

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

Old %ebx %esp-4 

Observation
– Saved & restored register %ebx

yp

xp

Rtn adr
Old %ebp %ebp 0 

 4 

 8 

12 

Offset

•
•
•

Old %ebx %esp-4 
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swap Finish #2

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr
Old %ebp %ebp 0 

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

Old %ebx %esp-4 

yp

xp

Rtn adr
Old %ebp %ebp 0 

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

%esp
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swap Finish #3

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr

%ebp

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

yp

xp

Rtn adr
Old %ebp %ebp 0 

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

%esp

%esp
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swap Finish #3

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr

%ebp

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

yp

xp

Rtn adr
Old %ebp %ebp 0 

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

%esp

%esp

Pop address from 
stack & jump there
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swap Finish #3

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr

%ebp

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

yp

xp

Rtn adr
Old %ebp %ebp 0 

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

%esp

%esp

Sunday, October 16, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

35

swap Finish #4

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

&zip2

&zip1 %esp

Exiting
Stack

•
•
•

%ebp

Observation
– Saved & restored register %ebx
– Didn’t do so for %eax, %ecx, or %edx

yp

xp

Rtn adr

%ebp

 4 

 8 

12 

Offset

swapʼs
Stack

•
•
•

%esp
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Register saving conventions

When procedure yoo calls who:
–  yoo is the caller, who is the callee

Can register be used for temporary storage?

– Contents of register %edx overwritten by who

yoo:
 • • •

movl $15213, %edx
call who
addl %edx, %eax

 • • •
ret

who:
 • • •

movl 8(%ebp), %edx
addl $91125, %edx

 • • •
ret
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Register saving conventions

When procedure yoo calls who:
–  yoo is the caller, who is the callee

Can register be used for temporary storage?
Conventions
– “Caller Save”

• Caller saves temporary in its frame before calling
– “Callee Save”

• Callee saves temporary in its frame before using
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IA32/Linux register usage

Integer registers
– Two have special uses

%ebp, %esp

– Three managed 
as callee-save
%ebx, %esi, %edi
• Old values saved 

on stack prior to using
– Three managed 

as caller-save
%eax, %edx, %ecx
• Do what you please, 

but expect any callee 
to do so, as well

– Register %eax also 
stores returned value

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

Caller-Save
Temporaries

Callee-Save
Temporaries

Special
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int rfact(int x)
{
  int rval;
  if (x <= 1)
    return 1;
  rval = rfact(x-1);
  return rval * x;
}

Recursive factorial

Registers
–  %eax used without first 

saving
–  %ebx used, but save at 

beginning & restore at end

.globl rfact
 .type  rfact,@function
rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx
 movl 8(%ebp),%ebx
 cmpl $1,%ebx
 jle .L78
 leal -1(%ebx),%eax
 pushl %eax
 call rfact
 imull %ebx,%eax
 jmp .L79
 .align 4
.L78:
 movl $1,%eax
.L79:
 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret
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rfact:
 pushl %ebp
 movl %esp,%ebp
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Rfact body

Registers
%ebx Stored value of x
%eax

• Temporary value of x-1
• Returned value from rfact(x-1)

• Returned value from this call

 movl 8(%ebp),%ebx # ebx = x
 cmpl $1,%ebx # Compare x : 1
 jle .L78 # If <= goto Term
 leal -1(%ebx),%eax # eax = x-1
 pushl %eax # Push x-1
 call rfact # rfact(x-1)
 imull %ebx,%eax # rval * x
 jmp .L79 # Goto done
.L78: # Term:
 movl $1,%eax # return val = 1
.L79: # Done:

int rfact(int x)
{
  int rval;
  if (x <= 1)
    return 1;
  rval = rfact(x-1) ;
  return rval * x;
}

Recursion
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Rfact recursion
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Rtn adr
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x-1%eax

x%ebx

x

Rtn adr
Old %ebp %ebp
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x%ebx
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Rfact recursion
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(x-1)!

Rfact result

x
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Old %ebx

%espx-1

%eax

x%ebx

x

Rtn adr
Old %ebp %ebp
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Return from Call

(x-1)!

Assume that rfact(x-1) 
returns (x-1)! in register 
%eax
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Rfact completion
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
retx

Rtn adr
Old %ebp %ebp 0 

 4 

 8 

Old %ebx
%esp

-4 

x!%ea
x

x%eb
x

x-1-8 

pre %ebp
pre %ebx
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Summary

The stack makes recursion work
– Private storage for each instance of procedure call

• Instantiations don’t clobber each other
• Addressing of locals + arguments can be relative to stack 

positions
– Can be managed by stack discipline

• Procedures return in inverse order of calls

IA32 Procedures combination of instructions + 
conventions
– Call / Ret instructions
– Register usage conventions

• Caller / Callee save
•  %ebp and %esp

– Stack frame organization conventions
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