
Chris Riesbeck, Fall 2011

Machine-Level Programming III - Procedures

Today
 IA32 stack discipline
 Register saving conventions
 Creating pointers to local variables
Next time
 Structured data

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

2

IA32 Stack

Region of memory managed
with stack discipline
Grows toward lower addresses
Register %esp indicates
lowest stack address
– address of top element

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

3

IA32/Linux stack frame

Current stack frame (“Top” to Bottom)
– Parameters for function about to call

• “Argument build”
– Local variables

• If can’t keep in registers
– Saved register context
– Old frame pointer

Caller stack frame
– Return address

• Pushed by call instruction

– Arguments for this call

Stack Pointer
(%esp)

Frame Pointer
(%ebp)

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %ebp

Arguments

Caller
Frame

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

4

IA32 Stack pushing

Pushing
– pushl Src
– Fetch operand at Src
– Decrement %esp by 4
– Write operand at

address given by %esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Stack
Pointer
%esp -4

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

5

IA32 Stack popping

Popping
– popl Dest
– Read operand at address

given by %esp
– Increment %esp by 4
– Write to Dest

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

+4

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

555

213

Stack operation examples

0x108

0x10c

0x110

555

213

123

0x108

0x108

0x10c

0x110

213

123

0x104

213

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

555

213

Stack operation examples

0x108

0x10c

0x110

555

213

123

0x108

pushl %eax

0x108

0x10c

0x110

213

123

0x104

213

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

555

213

Stack operation examples

0x108

0x10c

0x110

555

213

123

0x108 0x104

pushl %eax

0x108

0x10c

0x110

213

123

0x104

213

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

0x108

0x10c

0x110

0x104

555

213

123

Stack operation examples

0x108

0x10c

0x110

555

213

123

0x108 0x104

pushl %eax

0x108

0x10c

0x110

213

123

0x104

213

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

0x108

0x10c

0x110

0x104

555

213

213

123

Stack operation examples

0x108

0x10c

0x110

555

213

123

0x108 0x104

pushl %eax

0x108

0x10c

0x110

213

123

0x104

213

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

0x108

0x10c

0x110

0x104

555

213

213

123

Stack operation examples

0x108

0x10c

0x110

555

213

123

0x108 0x104

pushl %eax

0x108

0x10c

0x110

213

123

0x104

popl %edx

213

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

0x108

0x10c

0x110

0x104

555

213

213

123

Stack operation examples

0x108

0x10c

0x110

555

213

123

0x108 0x104

pushl %eax

0x108

0x10c

0x110

213

123

0x104

213

popl %edx

213

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx 555

0x108

0x108

0x10c

0x110

0x104

555

213

213

123

Stack operation examples

0x108

0x10c

0x110

555

213

123

0x108 0x104

pushl %eax

0x108

0x10c

0x110

213

123

0x104

213

popl %edx

0x108

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

7

Procedure control flow: call

Use stack to support procedure call and return
Procedure call
call label Push return address on stack; Jump to label
call *Operand Indirect call/jump

Return address value
– Address of instruction immediately following call
– Example from disassembly
 804854e: e8 3d 06 00 00 call 8048b90
<main>

 8048553: 50 pushl %eax
• Return address = 0x8048553

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

8

Procedure control flow: return

Procedure return
– leave Prepare stack for return; equivalent to

• movl %ebp, %esp
• popl %ebp

– ret Pop address from stack; Jump to address
 (after stack is ready)

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

123

Procedure call example

0x108

0x10c

0x110

123

0x108

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

%eip is program counter

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

123

Procedure call example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

%eip is program counter

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

123

Procedure call example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

0x104

%eip is program counter

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

0x8048553

123

Procedure call example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

0x104

%eip is program counter

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

0x8048553

123

Procedure call example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

0x8048b90

0x104

%eip is program counter

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

%esp

%eip

0x104

%esp

%eip 0x80485910x8048591

0x1040x104

0x108

0x10c

0x110

0x8048553

123

Procedure return example

0x108

0x10c

0x110

123

8048591: c3 ret

%eip is program counter

0x8048553

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

%esp

%eip

0x104

%esp

%eip 0x80485910x8048591

0x1040x104

0x108

0x10c

0x110

0x8048553

123

Procedure return example

0x108

0x10c

0x110

123

ret

8048591: c3 ret

%eip is program counter

0x8048553

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

%esp

%eip

0x104

%esp

%eip 0x80485910x8048591

0x1040x104

0x108

0x10c

0x110

0x8048553

123

Procedure return example

0x108

0x10c

0x110

123

ret

8048591: c3 ret

%eip is program counter

0x8048553

0x8048553

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

%esp

%eip

0x104

%esp

%eip 0x80485910x8048591

0x1040x104

0x108

0x10c

0x110

0x8048553

123

Procedure return example

0x108

0x10c

0x110

123

ret

8048591: c3 ret

0x108

%eip is program counter

0x8048553

0x8048553

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

11

Stack-based languages

Languages that support recursion
– e.g., C, Pascal, Java
– Code must be “reentrant”

• Multiple simultaneous instantiations of single procedure
– Need some place to store state of each instantiation

• Arguments
• Local variables
• Return pointer

Stack discipline
– State for given procedure needed for limited time

• From when called to when return
– Callee returns before caller does

Stack allocated in frames
– state for single procedure instantiation

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

12

Call chain example

Code structure
yoo(…)
{

•
•
who();
•
•

}

who(…)
{

• • •
amI();
• • •
amI();
• • •

}
amI(…)
{

•
•
amI();
•
•

}

yoo

who

amI

amI

amI

Call Chain

amI

Procedure amI recursive

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

13

Stack
Pointer
%esp

yoo

who

proc

Frame
Pointer
%ebp

Stack
“Top”

Stack frames

Contents
– Local variables
– Return information
– Temporary space

Management
– Space allocated when enter

procedure
• “Set-up” code

– Deallocated when return
• “Finish” code

Pointers
– Stack pointer %esp indicates

stack top
– Frame pointer %ebp indicates

start of current frame

amI

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

14

Stack
Pointer
%esp

yoo

•
•
•Frame

Pointer
%ebp

Stack operation

yoo

Call Chain
yoo(…)
{

•
•
who();
•
•

}

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

15

Stack
Pointer
%esp

yoo

who

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

}

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

16

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

17

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI

amI

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

18

Stack Pointer %esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI

amI

amI

amI

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

19

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI

amI

amI

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

20

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI

amI

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

21

Stack
Pointer
%esp

yoo

who

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

} amI

amI

amI

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

22

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

Call Chain
amI(…)
{

•
•
•
•

}
amI

amI

amI

amI

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

23

Stack
Pointer
%esp

yoo

who

•
•
•

Frame
Pointer
%ebp

Stack operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

} amI

amI

amI

amI

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

24

yoo(…)
{

•
•
who();
•
•

}

Stack
Pointer
%esp

yoo

•
•
•Frame

Pointer
%ebp

Stack operation

yoo

who

Call Chain

amI

amI

amI

amI

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

25

IA32/Linux stack frame

Current stack frame (“Top” to Bottom)
– Parameters for function about to call

• “Argument build”
– Local variables

• If can’t keep in registers
– Saved register context
– Old frame pointer

Caller stack frame
– Return address

• Pushed by call instruction

– Arguments for this call

Stack Pointer
(%esp)

Frame Pointer
(%ebp)

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %ebp

Arguments

Caller
Frame

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

26

Revisiting swap

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

int zip1 = 15213;
int zip2 = 91125;

void call_swap()
{
 swap(&zip1, &zip2);
}

call_swap:
 • • •
 pushl $zip2 # Global Var
 pushl $zip1 # Global Var
 call swap
 • • •

&zip2

&zip1

Rtn adr %esp

Resulting
Stack

•
•
•

Calling swap from call_swap

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

27

Revisiting swap

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

 movl 12(%ebp),%ecx
 movl 8(%ebp),%edx
 movl (%ecx),%eax
 movl (%edx),%ebx
 movl %eax,(%edx)
 movl %ebx,(%ecx)

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

Body

Set
Up

Finish

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

28

swap Setup #1

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Resulting
Stack

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

28

swap Setup #1

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Resulting
Stack

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

yp

xp

Rtn adr
Old %ebp

%ebp
•
•
•

%esp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

29

swap Setup #2

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

yp

xp

Rtn adr
Old %ebp %ebp

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

%esp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

30

swap Setup #3

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

yp

xp

Rtn adr
Old %ebp %ebp

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Old %ebx %esp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

31

Effect of swap setup

yp

xp

Rtn adr
Old %ebp %ebp 0

 4

 8

12

Offset
(relative to %ebp)

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Old %ebx %esp

 movl 12(%ebp),%ecx # get yp
 movl 8(%ebp),%edx # get xp
 . . .

Body

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

32

swap Finish #1

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr
Old %ebp %ebp 0

 4

 8

12

Offset

swapʼs
Stack

•
•
•

Old %ebx %esp-4

Observation
– Saved & restored register %ebx

yp

xp

Rtn adr
Old %ebp %ebp 0

 4

 8

12

Offset

•
•
•

Old %ebx %esp-4

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

33

swap Finish #2

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr
Old %ebp %ebp 0

 4

 8

12

Offset

swapʼs
Stack

•
•
•

Old %ebx %esp-4

yp

xp

Rtn adr
Old %ebp %ebp 0

 4

 8

12

Offset

swapʼs
Stack

•
•
•

%esp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

34

swap Finish #3

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr

%ebp

 4

 8

12

Offset

swapʼs
Stack

•
•
•

yp

xp

Rtn adr
Old %ebp %ebp 0

 4

 8

12

Offset

swapʼs
Stack

•
•
•

%esp

%esp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

34

swap Finish #3

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr

%ebp

 4

 8

12

Offset

swapʼs
Stack

•
•
•

yp

xp

Rtn adr
Old %ebp %ebp 0

 4

 8

12

Offset

swapʼs
Stack

•
•
•

%esp

%esp

Pop address from
stack & jump there

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

34

swap Finish #3

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

yp

xp

Rtn adr

%ebp

 4

 8

12

Offset

swapʼs
Stack

•
•
•

yp

xp

Rtn adr
Old %ebp %ebp 0

 4

 8

12

Offset

swapʼs
Stack

•
•
•

%esp

%esp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

35

swap Finish #4

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

&zip2

&zip1 %esp

Exiting
Stack

•
•
•

%ebp

Observation
– Saved & restored register %ebx
– Didn’t do so for %eax, %ecx, or %edx

yp

xp

Rtn adr

%ebp

 4

 8

12

Offset

swapʼs
Stack

•
•
•

%esp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

36

Register saving conventions

When procedure yoo calls who:
– yoo is the caller, who is the callee

Can register be used for temporary storage?

– Contents of register %edx overwritten by who

yoo:
 • • •

movl $15213, %edx
call who
addl %edx, %eax

 • • •
ret

who:
 • • •

movl 8(%ebp), %edx
addl $91125, %edx

 • • •
ret

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

37

Register saving conventions

When procedure yoo calls who:
– yoo is the caller, who is the callee

Can register be used for temporary storage?
Conventions
– “Caller Save”

• Caller saves temporary in its frame before calling
– “Callee Save”

• Callee saves temporary in its frame before using

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

38

IA32/Linux register usage

Integer registers
– Two have special uses

%ebp, %esp

– Three managed
as callee-save
%ebx, %esi, %edi
• Old values saved

on stack prior to using
– Three managed

as caller-save
%eax, %edx, %ecx
• Do what you please,

but expect any callee
to do so, as well

– Register %eax also
stores returned value

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

Caller-Save
Temporaries

Callee-Save
Temporaries

Special

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

39

int rfact(int x)
{
 int rval;
 if (x <= 1)
 return 1;
 rval = rfact(x-1);
 return rval * x;
}

Recursive factorial

Registers
– %eax used without first

saving
– %ebx used, but save at

beginning & restore at end

.globl rfact
 .type rfact,@function
rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx
 movl 8(%ebp),%ebx
 cmpl $1,%ebx
 jle .L78
 leal -1(%ebx),%eax
 pushl %eax
 call rfact
 imull %ebx,%eax
 jmp .L79
 .align 4
.L78:
 movl $1,%eax
.L79:
 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

39

int rfact(int x)
{
 int rval;
 if (x <= 1)
 return 1;
 rval = rfact(x-1);
 return rval * x;
}

Recursive factorial

Registers
– %eax used without first

saving
– %ebx used, but save at

beginning & restore at end

.globl rfact
 .type rfact,@function
rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx
 movl 8(%ebp),%ebx
 cmpl $1,%ebx
 jle .L78
 leal -1(%ebx),%eax
 pushl %eax
 call rfact
 imull %ebx,%eax
 jmp .L79
 .align 4
.L78:
 movl $1,%eax
.L79:
 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

39

int rfact(int x)
{
 int rval;
 if (x <= 1)
 return 1;
 rval = rfact(x-1);
 return rval * x;
}

Recursive factorial

Registers
– %eax used without first

saving
– %ebx used, but save at

beginning & restore at end

.globl rfact
 .type rfact,@function
rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx
 movl 8(%ebp),%ebx
 cmpl $1,%ebx
 jle .L78
 leal -1(%ebx),%eax
 pushl %eax
 call rfact
 imull %ebx,%eax
 jmp .L79
 .align 4
.L78:
 movl $1,%eax
.L79:
 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

40

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Rfact stack setup

Entering Stack

x

Rtn adr 4

 8

Caller

 0

-4
Callee

x

Rtn adr

Caller

%esp

%ebppre %ebp
pre %ebx

pre %ebp
pre %ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

40

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Rfact stack setup

Entering Stack

x

Rtn adr 4

 8

Caller

 0

-4
Callee

x

Rtn adr

Caller

%esp

%ebppre %ebp
pre %ebx

pre %ebp
pre %ebx

Old %ebp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

40

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Rfact stack setup

Entering Stack

x

Rtn adr 4

 8

Caller

 0

-4
Callee

x

Rtn adr

Caller

%esp

%ebppre %ebp
pre %ebx

pre %ebp
pre %ebx

Old %ebp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

40

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Rfact stack setup

Entering Stack

x

Rtn adr 4

 8

Caller

%ebp 0

-4
Callee

x

Rtn adr

Caller

%esp

%ebppre %ebp
pre %ebx

pre %ebp
pre %ebx

Old %ebp

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

40

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Rfact stack setup

Entering Stack

x

Rtn adr 4

 8

Caller

%ebp 0

-4
Callee

x

Rtn adr

Caller

%esp

%ebppre %ebp
pre %ebx

pre %ebp
pre %ebx

Old %ebp

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

40

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Rfact stack setup

Entering Stack

x

Rtn adr 4

 8

Caller

%ebp 0

%espOld %ebx-4
Callee

x

Rtn adr

Caller

%esp

%ebppre %ebp
pre %ebx

pre %ebp
pre %ebx

Old %ebp

rfact:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

41

Rfact body

Registers
%ebx Stored value of x
%eax

• Temporary value of x-1
• Returned value from rfact(x-1)

• Returned value from this call

 movl 8(%ebp),%ebx # ebx = x
 cmpl $1,%ebx # Compare x : 1
 jle .L78 # If <= goto Term
 leal -1(%ebx),%eax # eax = x-1
 pushl %eax # Push x-1
 call rfact # rfact(x-1)
 imull %ebx,%eax # rval * x
 jmp .L79 # Goto done
.L78: # Term:
 movl $1,%eax # return val = 1
.L79: # Done:

int rfact(int x)
{
 int rval;
 if (x <= 1)
 return 1;
 rval = rfact(x-1) ;
 return rval * x;
}

Recursion

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

42

Rfact recursion

x

Rtn adr
Old %ebp %ebp

Old %ebx

x-1%eax

x%ebx

x

Rtn adr
Old %ebp %ebp

Old %ebx %esp

%eax

x%ebx

x

Rtn adr
Old %ebp %ebp

Old %ebx
x-1

x-1%eax

x%ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

42

Rfact recursion

x

Rtn adr
Old %ebp %ebp

Old %ebx

x-1%eax

x%ebx

x

Rtn adr
Old %ebp %ebp

Old %ebx %esp

%eax

x%ebx

x-1

leal -1(%ebx),%eax

x

Rtn adr
Old %ebp %ebp

Old %ebx
x-1

x-1%eax

x%ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

42

Rfact recursion

x

Rtn adr
Old %ebp %ebp

Old %ebx

pushl %eax

%espx-1

x-1%eax

x%ebx

x

Rtn adr
Old %ebp %ebp

Old %ebx %esp

%eax

x%ebx

x-1

leal -1(%ebx),%eax

x

Rtn adr
Old %ebp %ebp

Old %ebx
x-1

x-1%eax

x%ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

42

Rfact recursion

x

Rtn adr
Old %ebp %ebp

Old %ebx

pushl %eax

%espx-1

x-1%eax

x%ebx

x

Rtn adr
Old %ebp %ebp

Old %ebx %esp

%eax

x%ebx

x-1

leal -1(%ebx),%eax

x

Rtn adr
Old %ebp %ebp

Old %ebx
x-1

x-1%eax

x%ebx

%espRtn adr

call rfact

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

43

(x-1)!

Rfact result

x

Rtn adr
Old %ebp %ebp

Old %ebx

%espx-1

%eax

x%ebx

x

Rtn adr
Old %ebp %ebp

Old %ebx

%espx-1

(x-1)!%eax

x%ebx

Return from Call

(x-1)!

Assume that rfact(x-1)
returns (x-1)! in register
%eax

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

43

(x-1)!

Rfact result

x

Rtn adr
Old %ebp %ebp

Old %ebx

%espx-1

imull %ebx,%eax

x!%eax

x%ebx

x

Rtn adr
Old %ebp %ebp

Old %ebx

%espx-1

(x-1)!%eax

x%ebx

Return from Call

(x-1)!

Assume that rfact(x-1)
returns (x-1)! in register
%eax

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

44

Rfact completion
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
retx

Rtn adr
Old %ebp %ebp 0

 4

 8

Old %ebx
%esp

-4

x!%ea
x

x%eb
x

x-1-8

pre %ebp
pre %ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

44

Rfact completion
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
retx

Rtn adr
Old %ebp %ebp 0

 4

 8

Old %ebx
%esp

-4

x!%ea
x

x%eb
x

x-1-8

pre %ebp
pre %ebx

Old %ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

44

Rfact completion
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
retx

Rtn adr
Old %ebp %ebp 0

 4

 8

Old %ebx
%esp

-4

x!%ea
x

x%eb
x

x-1-8

pre %ebp
pre %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

Old %ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

44

Rfact completion
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
retx

Rtn adr
Old %ebp %ebp 0

 4

 8

Old %ebx
%esp

-4

x!%ea
x

x%eb
x

x-1-8

pre %ebp
pre %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

x

Rtn adr
Old %ebp %ebp 0

 4

 8

%esp

x!%eax

Old %ebx%ebx

pre %ebp
pre %ebx

Old %ebx

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

44

Rfact completion
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
retx

Rtn adr
Old %ebp %ebp 0

 4

 8

Old %ebx
%esp

-4

x!%ea
x

x%eb
x

x-1-8

pre %ebp
pre %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

x

Rtn adr
Old %ebp %ebp 0

 4

 8

%esp

x!%eax

Old %ebx%ebx

pre %ebp
pre %ebx

Old %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

Sunday, October 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

44

Rfact completion
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
retx

Rtn adr
Old %ebp %ebp 0

 4

 8

Old %ebx
%esp

-4

x!%ea
x

x%eb
x

x-1-8

pre %ebp
pre %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

x

Rtn adr
Old %ebp %ebp 0

 4

 8

%esp

x!%eax

Old %ebx%ebx

pre %ebp
pre %ebx

Old %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

x

Rtn adr

%ebp

%esp

x!%eax

Old %ebx%ebx

pre %ebp
pre %ebx

Sunday, October 16, 2011

Checkpoint

Sunday, October 16, 2011

Checkpoint

Sunday, October 16, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/07-MachLevelProgIII-recur-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/07-MachLevelProgIII-recur-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

46

Summary

The stack makes recursion work
– Private storage for each instance of procedure call

• Instantiations don’t clobber each other
• Addressing of locals + arguments can be relative to stack

positions
– Can be managed by stack discipline

• Procedures return in inverse order of calls

IA32 Procedures combination of instructions +
conventions
– Call / Ret instructions
– Register usage conventions

• Caller / Callee save
• %ebp and %esp

– Stack frame organization conventions

Sunday, October 16, 2011

