
Chris Riesbeck, Spring 2010
Original: Fabian Bustamante

Dynamic Memory Allocation

Today
Dynamic memory allocation –
 mechanisms & policies
 Memory bugs

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Dynamic memory allocation

Explicit vs. implicit memory allocator
– Explicit: application allocates and frees space

• E.g., malloc and free in C
– Implicit: application allocates, but does not free space

• E.g. garbage collection in Java, ML or Lisp

Allocation
– In both cases the memory allocator provides an abstraction of

memory as a set of blocks
– Doles out free memory blocks to application

Will discuss simple explicit memory allocation today

Application

Dynamic Memory Allocator

Heap Memory

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Process memory image

kernel virtual memory

Memory mapped region for
shared libraries

run-time heap (via malloc)‏

program text (.text)‏

initialized data (.data)‏

uninitialized data (.bss)‏

stack

0

%esp

memory invisible to
 user code

the “brk” ptr

Allocators request
additional heap memory
from the operating
system using the sbrk
function.

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

C Memory Allocation Tutorial

http://randu.org/tutorials/c/dynamic.php

A particularly good tutorial on C memory
allocation that is both clearer and more careful
than most.

4

Wednesday, November 2, 2011

http://randu.org/tutorials/c/dynamic.php
http://randu.org/tutorials/c/dynamic.php

EECS 213 Introduction to Computer Systems
Northwestern University

Malloc package

#include <stdlib.h>
void *malloc(size_t size)‏
– If successful:

• Returns a pointer to a memory block of at least size bytes,
(typically) aligned to 8-byte boundary.

• If size == 0, returns NULL
– If unsuccessful: returns NULL (0) and sets errno.
void *realloc(void *p, size_t size)
– Changes size of block p and returns pointer to new block.
– Contents of new block unchanged up to min of old and new

size.
void free(void *p)‏
– Returns the block pointed at by p to pool of available memory
– p must come from a previous call to malloc or realloc.

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Malloc example

void foo(int n, int m) {
 int i, *p;

 /* allocate a block of n ints */
 if ((p = (int *) malloc(n * sizeof(int))) == NULL) {
 perror("malloc");
 exit(0);
 }
 for (i=0; i<n; i++)‏
 p[i] = i;

 /* add m bytes to end of p block */
 if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL) {
 perror("realloc");
 exit(0);
 }
 for (i=n; i < n+m; i++)‏
 p[i] = i;

 /* print new array */
 for (i=0; i<n+m; i++)‏
 printf("%d\n", p[i]);

 free(p); /* return p to available memory pool */
}

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Allocation examples

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Constraints

Applications:
– Can issue arbitrary sequence of allocation and free requests
– Free requests must correspond to an allocated block

Allocators
– Can’t control number or size of allocated blocks
– Must respond immediately to all allocation requests

• i.e., can’t reorder or buffer requests
– Must allocate blocks from free memory

• i.e., can only place allocated blocks in free memory
– Must align blocks so they satisfy all alignment requirements

• 8 byte alignment for GNU malloc (libc malloc) on Linux boxes
– Can only manipulate and modify free memory
– Can’t move the allocated blocks once they are allocated

• i.e., compaction is not allowed

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Goals of good malloc/free

Primary goals
– Good time performance for malloc and free

• Ideally should take constant time (not always possible)‏
• Should certainly not take linear time in the number of blocks

– Good space utilization
• User allocated structures should be large fraction of the heap.
• Want to minimize “fragmentation”.

Some other goals
– Good locality properties

• Structures allocated close in time should be close in space
• “Similar” objects should be allocated close in space

– Robust
• Can check that free(p1) is on a valid allocated object p1
• Can check that memory references are to allocated space

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Performance goals: throughput

Given some sequence of malloc and free requests:
– R0, R1, ..., Rk, ... , Rn-1

Want to maximize throughput and peak memory
utilization.
– These goals are often conflicting

Throughput:
– Number of completed requests per unit time
– Example:

• 5,000 malloc calls and 5,000 free calls in 10 seconds
• Throughput is 1000 operations/second.

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Performance goals: Peak mem utilization

Given some sequence of malloc and free requests:
– R0, R1, ..., Rk, ... , Rn-1

Def: Aggregate payload Pk:
 malloc(p) results in a block with a payload of p bytes.
After request Rk has completed, the aggregate payload Pk is
the sum of currently allocated payloads.

Def: Current heap size Hk
Assume that Hk is monotonically nondecreasing

Def: Peak memory utilization:
– After k requests, peak memory utilization is:

• Uk = (maxi<k Pi) / Hk

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Internal fragmentation

• Poor memory utilization caused by fragmentation.
– Comes in two forms: internal and external fragmentation

Internal fragmentation
– For some block, internal fragmentation is the difference

between the block size and the payload size.

– Caused by overhead of maintaining heap data structures,
padding for alignment purposes, or explicit policy decisions
(e.g., not to split the block).

– Depends only on the pattern of previous requests, and thus is
easy to measure.

payload
Internal
fragmentation

block

Internal
fragmentation

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

External fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

oops!

Occurs when there is enough aggregate heap memory, but no single
free block is large enough

External fragmentation depends on the pattern of future requests, and
thus is difficult to measure.

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Implementation issues

How do we know how much memory to free
just given a pointer?
How do we keep track of the free blocks?
What do we do with the extra space when
allocating a structure that is smaller than the
free block it is placed in?
How do we pick a block to use for allocation --
many might fit?
How do we reinsert freed block?

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Knowing how much to free

Standard method
– Keep the length of a block in the word preceding the

block.
• This word is often called the header field or header

– Requires an extra word for every allocated block

free(p0)

p0 = malloc(4) p0

Block size data

5

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Keeping track of free blocks

• Method 1: Implicit list using lengths -- links all blocks

• Method 2: Explicit list among the free blocks using
pointers within the free blocks

• Method 3: Segregated free list
- Different free lists for different size classes

• Method 4: Blocks sorted by size
– Can use a balanced tree (e.g. Red-Black tree) with

pointers within each free block, and the length used as a
key

5 4 26

5 4 26

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Method 1: Implicit List

Need to identify whether each block is free or
allocated
– Can use extra bit
– Bit can be put in the same word as the size if block

sizes are always multiples of two (mask out low
order bit when reading size).

size

1 word

Format of
allocated and
free blocks

payload

a = 1: allocated block
a = 0: free block

size: block size

payload: application data
(allocated blocks only)‏

a

optional
padding

Wednesday, November 2, 2011

Checkpoint

Wednesday, November 2, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/16-MemAlloc-malloc-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/16-MemAlloc-malloc-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

Implicit list: Finding a free block

First fit:
– Find first free block that fits
– Can take linear time in total number of blocks (allocated

and free)
– In practice causes “splinters” at beginning of list

Next fit:
– Like first-fit, but search from location of end of previous

search
– Research suggests that fragmentation is worse

Best fit:
– Search the list, choose the free block with the closest

size that fits
– Keeps fragments small --- usually helps fragmentation
– Will typically run slower than first-fit

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Implicit list: Allocating in free block

• Allocating in a free block - splitting
– Since allocated space might be smaller than free

space, we might want to split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // add 1 and round up
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)‏
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 2)

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Implicit list: Freeing a block

Simplest implementation:
– Only need to clear allocated flag
– But can lead to “false fragmentation”

There is enough free space, but the allocator won’t
be able to find it

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5)
Oops!

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Implicit list: Coalescing

• Join (coalesce) with next and/or previous block
if they are free
– Coalescing with next block

– But how do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Implicit list: Bidirectional coalescing

• Boundary tags [Knuth73]
– Replicate size/allocated word at bottom of free blocks
– Allows us to traverse the “list” backwards, but requires extra

space
– Important and general technique!

size

1 word

Format of
allocated and
free blocks

payload and
padding

a = 1: allocated block
a = 0: free block

size: total block size

payload: application data
(allocated blocks only)‏

a

size aBoundary tag
 (footer)‏

4 4 4 4 6 46 4

Header

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Constant time coalescing

allocated

allocated

allocated

free

free

allocated

free

free

block being
freed

Case 1 Case 2 Case 3 Case 4

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

m1 1

Constant time coalescing (Case 1)‏

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

m1 1

Constant time coalescing (Case 2)‏

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

n 1
m2 1

m2 1

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

m1 0

Constant time coalescing (Case 3)‏

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

m1 0

Constant time coalescing (Case 4)‏

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Summary of key allocator policies

Placement policy:
– First fit, next fit, best fit, etc.
– Trades off lower throughput for less fragmentation

Splitting policy:
– When do we go ahead and split free blocks?
– How much internal fragmentation are we willing to tolerate?

Coalescing policy:
– Immediate coalescing: coalesce adjacent blocks each time

free is called
– Deferred coalescing: try to improve performance of free by

deferring coalescing until needed. e.g.,
• Coalesce as you scan the free list for malloc.
• Coalesce when the amount of external fragmentation reaches

some threshold.

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Implicit lists: summary

Implementation: very simple
Allocate: linear time worst case
Free: constant time worst case -- even with coalescing
Memory usage: will depend on placement policy
– First fit, next fit or best fit

Not used in practice for malloc/free because of linear
time allocate. Used in many special purpose
applications.
However, the concepts of splitting and boundary tag
coalescing are general to all allocators.

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Implicit mem. mgmnt: Garbage collection

• Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free

Common in functional languages, scripting languages,
and modern object oriented languages:
– Lisp, ML, Java, Perl, Mathematica,

Variants (conservative garbage collectors) exist for C
and C++
– Cannot collect all garbage

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Garbage collection

How does the memory manager know when
memory can be freed?
– In general we cannot know what is going to be used

in the future since it depends on conditionals
– But we can tell that certain blocks cannot be used if

there are no pointers to them

Need to make certain assumptions about
pointers
– Memory manager can distinguish pointers from

non-pointers
– All pointers point to the start of a block

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Memory as a graph

We view memory as a directed graph
– Each block is a node in the graph
– Each pointer is an edge in the graph
– Locations not in the heap that contain pointers into the heap

are called root nodes (e.g. registers, locations on the stack,
global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)‏

reachable

 A node (block) is reachable if there is a path from any root to that node.
 Non-reachable nodes are garbage (never needed by the application)‏

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Mark and sweep collecting

Can build on top of malloc/free package
– Allocate using malloc until you “run out of space”

When out of space:
– Use extra mark bit in the head of each block
– Mark: Start at roots and set mark bit on all reachable

memory
– Sweep: Scan all blocks and free blocks that are not marked

Before mark

root

After mark

After sweep free

Mark bit set

free

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Memory-related bugs

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Dereferencing bad pointers

• The classic scanf bug
• scanf("%d", &val)

scanf("%d", val);

read a number into val

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Allow buffer overflow

Never take unlimited external input
fgets(buf, 63, stdin)

char buf[64];

gets(buf);

read a string into buf

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Reading uninitialized memory

Assuming that heap data is initialized to zero
zero yourself, or use calloc()

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++)‏
 for (j=0; j<N; j++)‏
 y[i] += A[i][j]*x[j];
 return y;
}

collect an array of sums

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Overwriting memory

Allocating the (possibly) wrong sized object
p = malloc(n * sizeof(int *));

int **p;

p = malloc(n * sizeof(int));

for (i=0; i < n; i++) {
 p[i] = malloc(m * sizeof(int));
}

 create an array of pointers to arrays of ints

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Overwriting memory

Off-by-one error
for (i = 0; i < n; i++)

int **p;

p = malloc(n * sizeof(int *));

for (i = 0; i <= n ; i++) {
 p[i] = malloc(m * sizeof(int));
}

 create an array of pointers to arrays of ints

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Overwriting memory

Referencing a pointer instead of the object it
points to
(*size)--

int *binheapDelete(int **binheap, int *size) {
 int *packet;
 packet = binheap[0];
 binheap[0] = binheap[*size - 1];
 *size--;
 heapify(binheap, *size, 0);
 return(packet);
}

remove first item, re-heapify remaining items

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Overwriting memory

Misunderstanding pointer arithmetic
p++

int *search(int *p, int val) {

 while (*p && *p != val)‏
 p += sizeof(int);

 return p;
}

return pointer to first occurrence of val

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Referencing nonexistent variables

Local variables disappear when a function
returns

int *foo (int n) {
 int val = n * n;
 return &val;
}

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Freeing blocks multiple times

Nasty!
free(y)

x = malloc(n * sizeof(int));
...
free(x);

y = malloc(n * sizeof(int));
...
free(x);

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Referencing freed blocks

Evil!

x = malloc(n * sizeof(int));
...
free(x);
...
y = malloc(m * sizeof(int));
for (i = 0; i < m; i++)‏
 y[i] = x[i]++;

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Memory leaks

Slow, long-term killer!

foo() {
 int *x = malloc(n * sizeof(int));
 ...
 return;
}

Wednesday, November 2, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Memory-related bugs

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks
Failing to free blocks
Also see this tutorial which includes some
common coding mistakes:

http://randu.org/tutorials/c/dynamic.php

Wednesday, November 2, 2011

http://randu.org/tutorials/c/dynamic.php
http://randu.org/tutorials/c/dynamic.php

