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Dynamic Memory Allocation

Today
Dynamic memory allocation –
   mechanisms & policies
 Memory bugs
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Dynamic memory allocation

Explicit vs. implicit memory allocator
– Explicit:  application allocates and frees space 

• E.g.,  malloc and free in C
– Implicit: application allocates, but does not free space

• E.g. garbage collection in Java, ML or Lisp

Allocation
– In both cases the memory allocator provides an abstraction of 

memory as a set of blocks
– Doles out free memory blocks to application

Will discuss simple explicit memory allocation today

Application

Dynamic Memory Allocator

Heap Memory
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Process memory image

kernel virtual memory

Memory mapped region for
shared libraries

run-time heap (via malloc)‏

program text (.text)‏

initialized data (.data)‏

uninitialized data (.bss)‏

stack

0

%esp

memory invisible to
 user code

the “brk” ptr

Allocators request
additional heap memory
from the operating 
system using the sbrk 
function. 
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C Memory Allocation Tutorial

http://randu.org/tutorials/c/dynamic.php

A particularly good tutorial on C memory 
allocation that is both clearer and more careful 
than most.

4
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Malloc package

#include <stdlib.h>
void *malloc(size_t size)‏
– If successful:

• Returns a pointer to a memory block of at least size bytes, 
(typically) aligned to 8-byte boundary.

• If size == 0, returns NULL
– If unsuccessful: returns NULL (0) and sets errno.
void *realloc(void *p, size_t size) 
– Changes size of block p and returns pointer to new block.
– Contents of new block unchanged up to min of old and new 

size.
void free(void *p)‏
– Returns the block pointed at by p to pool of available memory
– p must come from a previous call to malloc or realloc.
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Malloc example

void foo(int n, int m) {
  int i, *p;
  
  /* allocate a block of n ints */
  if ((p = (int *) malloc(n * sizeof(int))) == NULL) {
    perror("malloc");
    exit(0);
  }
  for (i=0; i<n; i++)‏
    p[i] = i;

  /* add m bytes to end of p block */
  if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL) {
    perror("realloc");
    exit(0);
  }
  for (i=n; i < n+m; i++)‏
    p[i] = i;

  /* print new array */  
  for (i=0; i<n+m; i++)‏
    printf("%d\n", p[i]);

  free(p); /* return p to available memory pool */
}
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Allocation examples

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)
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Constraints

Applications:
– Can issue arbitrary sequence of allocation and free requests
– Free requests must correspond to an allocated block

Allocators
– Can’t control number or size of allocated blocks
– Must respond immediately to all allocation requests

• i.e., can’t reorder or buffer requests
– Must allocate blocks from free memory

• i.e., can only place allocated blocks in free memory
– Must align blocks so they satisfy all alignment requirements

• 8 byte alignment for GNU malloc (libc malloc) on Linux boxes
– Can only manipulate and modify free memory
– Can’t move the allocated blocks once they are allocated

• i.e., compaction is not allowed
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Goals of good malloc/free 

Primary goals
– Good time performance for malloc and free

• Ideally should take constant time (not always possible)‏
• Should certainly not take linear time in the number of blocks

– Good space utilization
• User allocated structures should be large fraction of the heap.
• Want to minimize “fragmentation”.

Some other goals
– Good locality properties

• Structures allocated close in time should be close in space
• “Similar” objects should be allocated close in space

– Robust
• Can check that free(p1) is on a valid allocated object p1
• Can check that memory references are to allocated space

Wednesday, November 2, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

Performance goals: throughput

Given some sequence of malloc and free requests:
–  R0, R1, ..., Rk, ... , Rn-1

Want to maximize throughput and peak memory 
utilization.
– These goals are often conflicting

Throughput:
– Number of completed requests per unit time
– Example:

• 5,000 malloc calls and 5,000 free calls in 10 seconds 
• Throughput is 1000 operations/second.
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Performance goals: Peak mem utilization

Given some sequence of malloc and free requests:
–  R0, R1, ..., Rk, ... , Rn-1

Def: Aggregate payload Pk: 
 malloc(p) results in a block with a payload of p bytes. 
After request Rk has completed, the aggregate payload Pk is 
the sum of currently allocated payloads.

Def: Current heap size Hk
Assume that Hk is monotonically nondecreasing

Def: Peak memory utilization: 
– After k requests, peak memory utilization is:

• Uk = ( maxi<k Pi )  /  Hk
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Internal fragmentation

• Poor memory utilization caused by fragmentation.
– Comes in two forms: internal and external fragmentation

Internal fragmentation
– For some block, internal fragmentation is the difference 

between the block size and the payload size.

– Caused by overhead of maintaining heap data structures, 
padding for alignment purposes, or explicit policy decisions 
(e.g., not to split the block).

– Depends only on the pattern of previous requests, and thus is 
easy to measure.

payload
Internal 
fragmentation

block

Internal 
fragmentation
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External fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

oops!

Occurs when there is enough aggregate heap memory, but no single
free block is large enough

External fragmentation depends on the pattern of future requests, and
thus is difficult to measure. 

Wednesday, November 2, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

Implementation issues

How do we know how much memory to free 
just given a pointer?
How do we keep track of the free blocks?
What do we do with the extra space when 
allocating a structure that is smaller than the 
free block it is placed in?
How do we pick a block to use for allocation -- 
many might fit?
How do we reinsert freed block?
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Knowing how much to free

Standard method
– Keep the length of a block in the word preceding the 

block.
• This word is often called the header field or header

– Requires an extra word for every allocated block

free(p0)

p0 = malloc(4) p0

Block size data

5

Wednesday, November 2, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

Keeping track of free blocks

• Method 1: Implicit list using lengths -- links all blocks

• Method 2: Explicit list among the free blocks using 
pointers within the free blocks

• Method 3: Segregated free list
- Different free lists for different size classes

• Method 4: Blocks sorted by size
– Can use a balanced tree (e.g. Red-Black tree) with 

pointers within each free block, and the length used as a 
key

5 4 26

5 4 26
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Method 1: Implicit List

Need to identify whether each block is free or 
allocated
– Can use extra bit
– Bit can be put in the same word as the size if block 

sizes are always multiples of two (mask out low 
order bit when reading size).

size

1 word

Format of
allocated and
free blocks

payload

a = 1: allocated block  
a = 0: free block

size: block size

payload: application data
(allocated blocks only)‏

a

optional
padding
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Implicit list: Finding a free block

First fit:
– Find first free block that fits
– Can take linear time in total number of blocks (allocated 

and free)
– In practice causes “splinters” at beginning of list

Next fit:
– Like first-fit, but search from location of end of previous 

search
– Research suggests that fragmentation is worse 

Best fit:
– Search the list, choose the free block with the closest 

size that fits
– Keeps fragments small --- usually helps fragmentation
– Will typically run slower than first-fit
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Implicit list: Allocating in free block

• Allocating in a free block - splitting
– Since allocated space might be smaller than free 

space, we might want to split the block

void addblock(ptr p, int len) {
  int newsize = ((len + 1) >> 1) << 1;  // add 1 and round up
  int oldsize = *p & -2;                // mask out low bit
  *p = newsize | 1;                     // set new length
  if (newsize < oldsize)‏
    *(p+newsize) = oldsize - newsize;   // set length in remaining
}                                       //   part of block

4 4 26

4 24

p

24

addblock(p, 2)
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Implicit list: Freeing a block

Simplest implementation:
– Only need to clear allocated flag
– But can lead to “false fragmentation” 

There is enough free space, but the allocator won’t 
be able to find it

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5)
Oops!
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Implicit list: Coalescing

• Join (coalesce) with next and/or previous block 
if they are free
– Coalescing with next block

   

– But how do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6

void free_block(ptr p) {
    *p = *p & -2;          // clear allocated flag
    next = p + *p;         // find next block
    if ((*next & 1) == 0)
      *p = *p + *next;    // add to this block if
}                         //    not allocated
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Implicit list: Bidirectional coalescing 

• Boundary tags [Knuth73]
– Replicate size/allocated word at bottom of free blocks
– Allows us to traverse the “list” backwards, but requires extra 

space
– Important and general technique!

size

1 word

Format of
allocated and
free blocks

payload and
padding

a = 1: allocated block  
a = 0: free block

size: total block size

payload: application data
(allocated blocks only)‏

a

size aBoundary tag
  (footer)‏

4 4 4 4 6 46 4

Header
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Constant time coalescing

allocated

allocated

allocated

free

free

allocated

free

free

block being
freed

Case 1 Case 2 Case 3 Case 4
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m1 1

Constant time coalescing (Case 1)‏

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1
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m1 1

Constant time coalescing (Case 2)‏

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

n 1
m2 1

m2 1
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m1 0

Constant time coalescing (Case 3)‏

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1
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m1 0

Constant time coalescing (Case 4)‏

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0
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Summary of key allocator policies

Placement policy:
– First fit, next fit, best fit, etc.
– Trades off lower throughput for less fragmentation 

Splitting policy:
– When do we go ahead and split free blocks?
– How much internal fragmentation are we willing to tolerate?

Coalescing policy:
– Immediate coalescing: coalesce adjacent blocks each time 

free is called 
– Deferred coalescing: try to improve performance of free by 

deferring coalescing until needed. e.g.,
• Coalesce as you scan the free list for malloc.
• Coalesce when the amount of external fragmentation reaches 

some threshold.
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Implicit lists: summary

Implementation: very simple
Allocate: linear time worst case
Free: constant time worst case -- even with coalescing
Memory usage: will depend on placement policy
– First fit, next fit or best fit

Not used in practice for malloc/free because of linear 
time allocate.  Used in many special purpose 
applications.
However, the concepts of splitting and boundary tag 
coalescing are general to all allocators.
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Implicit mem. mgmnt: Garbage collection

• Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free

Common in functional languages, scripting languages, 
and modern object oriented languages:
– Lisp, ML, Java, Perl, Mathematica, 

Variants (conservative garbage collectors) exist for C 
and C++
– Cannot collect all garbage

void foo() {
   int *p = malloc(128);
   return; /* p block is now garbage */
}
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Garbage collection

How does the memory manager know when 
memory can be freed?
– In general we cannot know what is going to be used 

in the future since it depends on conditionals
– But we can tell that certain blocks cannot be used if 

there are no pointers to them

Need to make certain assumptions about 
pointers
– Memory manager can distinguish pointers from 

non-pointers
– All pointers point to the start of a block 

Wednesday, November 2, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

Memory as a graph

We view memory as a directed graph
– Each block is a node in the graph 
– Each pointer is an edge in the graph
– Locations not in the heap that contain pointers into the heap 

are called root  nodes  (e.g. registers, locations on the stack, 
global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)‏

reachable

 A node (block) is reachable  if there is a path from any root to that node.
 Non-reachable nodes are garbage (never needed by the application)‏
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Mark and sweep collecting

Can build on top of malloc/free package
– Allocate using malloc until you “run out of space”

When out of space:
– Use extra mark bit in the head of each block
– Mark: Start at roots and set mark bit on all reachable 

memory
– Sweep: Scan all blocks and free blocks that are not marked

Before mark

root

After mark

After sweep free

Mark bit set

free
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Memory-related bugs
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Dereferencing bad pointers

• The classic scanf bug
• scanf("%d", &val)

scanf("%d", val);

read a number into val
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Allow buffer overflow

Never take unlimited external input 
fgets(buf, 63, stdin)

char buf[64];

gets(buf);

read a string into buf
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Reading uninitialized memory

Assuming that heap data is initialized to zero
zero yourself, or use calloc()

/* return y = Ax */
int *matvec(int **A, int *x) { 
   int *y = malloc(N*sizeof(int));
   int i, j;

   for (i=0; i<N; i++)‏
      for (j=0; j<N; j++)‏
         y[i] += A[i][j]*x[j];
   return y;
}

collect an array of sums
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Overwriting memory

Allocating the (possibly) wrong sized object
p = malloc(n * sizeof(int *));

int **p;

p = malloc(n * sizeof(int));

for (i=0; i < n; i++) {
   p[i] = malloc(m * sizeof(int));
}

 create an array of pointers to arrays of ints
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Overwriting memory

Off-by-one error
for (i = 0; i < n; i++) 

int **p;

p = malloc(n * sizeof(int *));

for (i = 0; i <= n ; i++) {
   p[i] = malloc(m * sizeof(int));
}

 create an array of pointers to arrays of ints
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Overwriting memory

Referencing a pointer instead of the object it 
points to
(*size)--

int *binheapDelete(int **binheap, int *size) {
   int *packet;
   packet = binheap[0];
   binheap[0] = binheap[*size - 1];
   *size--;
   heapify(binheap, *size, 0);
   return(packet);
}

remove first item, re-heapify remaining items
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Overwriting memory

Misunderstanding pointer arithmetic
p++

int *search(int *p, int val) {
   
   while (*p && *p != val)‏
      p += sizeof(int);

   return p;
}

return pointer to first occurrence of val
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Referencing nonexistent variables

Local variables disappear when a function 
returns

int *foo (int n) {
   int val = n * n;
   return &val;
}  
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Freeing blocks multiple times

Nasty!
free(y)

x = malloc(n * sizeof(int));
...
free(x);

y = malloc(n * sizeof(int));
...
free(x);
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Referencing freed blocks

Evil! 

x = malloc(n * sizeof(int));
...
free(x);
...
y = malloc(m * sizeof(int));
for (i = 0; i < m; i++)‏
   y[i] = x[i]++;
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Memory leaks

Slow, long-term killer! 

foo() {
   int *x = malloc(n * sizeof(int));
   ...
   return;
}
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Memory-related bugs

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks
Failing to free blocks
Also see this tutorial which includes some 
common coding mistakes:

http://randu.org/tutorials/c/dynamic.php
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