
December 10, 2009 Name _____________________________

1

EECS 311 Data Structures

Final Exam
Don’t Panic!

1. [10 pts] Show how Quicksort would sort the array below. Pick the pivot with median-

of-three, using integer division to get the center. Don’t sort the three, just swap the pivot

with the last element. Be very clear about what goes where in each partitioning phase,

e.g., write something like the following for each partitioning:

sorting from __ to __, pivot __ swaps with __
 quicksort pass swaps __ with __, __ with __, __ with __, …
 result = …

Circle the pivot in its final location. When a partition is 3 elements or fewer, just indicate

the swaps needed, if any, to directly sort it.

0 1 2 3 4 5 6 7 8 9 10

23 51 4 18 8 72 31 42 17 9 5

sorting from 0 to 10, median of 23, 72 and 5 is 23, swap with last element 5
 then swap 51 with 9, 72 with 17
 then swap pivot 23 with 31 to put pivot in final location 6
 result = 5 9 4 18 8 17 [23] 42 72 51 31
sorting from 0 to5, median of 5, 4 and 17 is 5, swap with last element 17
 then swap 17 with 4
 then swap pivot 5 with 9 to put pivot in final location 1
 result = 4 [5] 9 8 18 17 [23] 42 72 51 31
sorting from 2 to 5, median of 4, 18 and 17 is 17
 no pivot swap needed, no quicksort swaps needed
 swap pivot 17 with 18 to put pivot in final location 4
 result =4 [5] 9 8 [17] 18 [23] 42 72 51 31
sort 9 and 8 directly
 result =[4 5 8 9 17 18 23] 42 72 51 31
sorting from 7 to 10, median of 42, 72and 31 is 42, swap with last element 31
 then swap 72 with 51
 swap pivot 42 with 51 to put pivot in final location 7
 result =[4 5 8 9 17 18 23] 31 [42] 72 51
sort 72 and 51 directly
 result =4 5 8 9 17 18 23 31 42 51 72

Comment [CKR1]: Average9.2,
Median 10

Comment [CKR2]: Most got this.

Common mistakes:

• Including the pivot in later sorts

• Picking the middle element, not the

median of three

• Not swapping pivot with last element

first

December 10, 2009 Name _____________________________

2

2. [10 pts] In the table cells below, show the values that Prim’s algorithm would find

while creating a minimum spanning tree for the graph below starting from vertex D.

Initial values are shown. Under best edge weight and best edge vertex put the sequence

of weights and vertices of the best edge leading to the given vertex, in the order found.

Under when done put 1 for the 1
st
 edge finished, 2 for the 2

nd
, and so on. Draw a line on

the graph edges used in the final MST. Is this unique? Why or why not?

vertex when done best edge weight best edge vertex

A 4 ∞ 6 3 - D E

B 5 ∞ 4 2 - E A

C 9 ∞ 10 6 - B F

D 0 0 -

E 1 ∞ 5 - D

F 6 ∞ 11 3 - E I

G 8 ∞ 6 3 - F J

H 3 ∞ 9 2 - D E

I 2 ∞ 1 - E

J 7 ∞ 3 - I

Unique answer. All edges available as next choices were eventually selected anyway.Unique answer. All edges available as next choices were eventually selected anyway.Unique answer. All edges available as next choices were eventually selected anyway.Unique answer. All edges available as next choices were eventually selected anyway.

D

A B C

E F G

H I J

6 3

9

8 3

3

7

6115

2 10

64

2 1 3 11

8

Comment [CKR3]: Average 8.5
Median 9

Comment [CKR4]: Most common
mistakes:

• Using path weights not edge weights

• Not choosing cheapest edge at each

point

• Not updating cheapest available edges

• Assuming multiple choices sufficient
for multiple answers

Comment [CKR5]: Many possible
orderings, but

• E, I and H must be start

• B must immediately follow A

• C must be last

December 10, 2009 Name _____________________________

3

3. [10 pts] In the table below show the values Dijkstra’s algorithm would generate to find

the shortest path from A to G. Under best path put the sequence of path distances found,

in order, for each vertex. Under best vertex put the path vertices found, in order. Under

when done put 1 for the first vertex that is finished, 2 for the 2
nd

 vertex finished, etc.

vertex when known best path best vertex

A 0 0 -

B 1 ∞ 2 A

C 2 ∞ 3 A

D 3 ∞ 7 6 A B

E ∞ 10 B

F ∞ 12 8 C D

G 4 ∞ 7 D

C

A B

D E

F G

73

9

8

113

2

4

2 1 3

8

Comment [CKR6]: Average 8.1
Median 8

Comment [CKR7]: Most common
mistakes:

• Using edge weights not path weights

• Not picking cheapest next path weight

• Not updating cheapest available path

• Not stopping when G done (no points

deducted)

December 10, 2009 Name _____________________________

4

4. [10 pts] Use the dynamic programming approach to sequence alignment for the

problem below. Matching letters score +4 points, mismatching letters score -3, and a

gap in either sequence scores -2. Draw small arrows from each cell X to the previous

cell(s) whose score leads to the one in X. Show an optimal alignment that follows

from this table. Is it unique? Why or why not?

Sequence 1: G T A T C G A

Sequence 2: G A T C G A A

 G T A T C G A

 0 -2 -4 -6 -8 -10 -12 -14

G -2 4 2 0 -2 -4 -6 -8

A -4 2 1 6 4 2 0 -2

T -6 0 6 4 10 8 6 4

C -8 -2 4 3 8 14 12 10

G -10 -4 2 1 6 12 18 16

A -12 -6 0 6 4 10 16 22

A -14 -8 -2 4 3 8 14 20

Two solutions: G T A T C G – A and G T A T C G A -

 G – A T C G A A and G – A T C G A A

Comment [CKR8]: Average 8.4
Median 9

Comment [CKR9]: Most common
mistakes:

• Wrong deltas, e.g., -3 going
horizontally

• Not picking best transition, e.g., going

horizontal when diagonal better

• Not showing a resulting optimal
alignment

• Showing only half an alignment

• Saying alignment was unique

December 10, 2009 Name _____________________________

5

5. [10 pts] The dynamic programming formula for the maximum sum M(A, j) of a

contiguous subsequence ending on position j of an integer array A is:

M(A, j) = max(M(A, j – 1) + A[j], A[j])

Given the C++ template class below (from class)

template < class Arg, class Result >

class UnaryMemoFunction {

private:

 typedef std::map< Arg, Result > Cache;

 Cache cache;

public:

 Result operator() (Arg a) { return memo(a); }

protected:

 Result memo(Arg a) {

 typename Cache::const_iterator it = cache.find(a);

 return it == cache.end() ? cache[a] = call(a): it->second;

 }

 virtual Result call(Arg n) = 0;

};

fill in the code below to make the example test and ones like it pass:

class MaxSum : public UnaryMemoFunction<int, int>

{

public:

 MaxSum(std::vector<int> a) : a(a) {}

protected:

 int call(int j)

 {

 return j == -1 ? 0 :

 std::max(memo(j - 1) + a[j], a[j]);

 }

private:

 std::vector<int> a;

};

TEST(MaxSum)

{

 int a1[] = { -2, 11, -4, 13, -5, -2 };

 std::vector<int> v(a1, a1 + 6);

 // make a function object that sums over v

 MaxSum maxSummer(v);

 //find largest subsequence sum in v

 int result = -1;

 for (unsigned int i = 0; i < v.size(); ++i)

 result = std::max(result, maxSummer(i));

 CHECK_EQUAL(20, result);

}

Comment [CKR10]: Average 5.0
Median 4

Comment [CKR11]: Comon
mistakes:

• Not including the superclass

• Including superclass as data member

• Naming function maxSum() instead of
call() and memo()

• No base case

• Writing a loop

