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ABSTRACT

Recent denial of service attacks are mounted by professionals using
Botnets of tens of thousands of compromised machines. To circumvent
detection, attackers are increasingly moving away from pure band-
width floods to attacks that mimic the Web browsing behavior of a
large number of clients, and target expensive higher-layerresources
such as CPU, database and disk bandwidth. The resulting attacks are
hard to defend against using standard techniques as the malicious re-
quests differ from the legitimate ones in intent but not in content.

We present the design and implementation of Kill-Bots, a kernel exten-
sion to protect Web servers against DDoS attacks that masquerade as
flash crowds. Kill-Bots provides authentication using graphical tests
but is different from other systems that use graphical tests. First, in-
stead of authenticating clients based on whether they solvethe graph-
ical test, Kill-Bots uses the test to quickly identify the IPaddresses
of the attack machines. This allows it to block the maliciousrequests
while allowing access to legitimate users who are unable or unwill-
ing to solve graphical tests. Second, Kill-Bots sends a testand checks
the client’s answer without allowing unauthenticated clients access to
sockets, TCBs, worker processes, etc. This protects the authentication
mechanism from being DDoSed. Third, Kill-Bots combines authenti-
cation with admission control. As a result, it improves performance,
regardless of whether the server overload is caused by DDoS or a true
Flash Crowd. This makes Kill-Bots the first system to addressboth
DDoS and Flash Crowds within a single framework. We have imple-
mented Kill-Bots in the Linux kernel and evaluated it in the wide-area
Internet using PlanetLab.

1. INTRODUCTION

Denial of service attacks are increasingly mounted by professionals
in exchange for money or material benefits [44]. Botnets of thou-
sands of compromised machines are rented by the hour on IRC and
used to DDoS online businesses to extort money or obtain commer-
cial advantages [53, 35, 23]. The DDoS business is thriving;increas-
ingly aggressive worms infect about 30,000 new machines perday,
which are used for DDoS and other attacks [51, 23]. Recently,a Mas-
sachusetts businessman paid members of the computer underground
to launch organized, crippling DDoS attacks against three of his com-
petitors [44]. The attackers used Botnets of more than ten thousand
machines. When the simple SYN flood failed, they launched an HTTP
flood; pulling large image files from the victim server in overwhelming
numbers. At its peak the onslaught allegedly kept the victimcompany
offline for two weeks. In another instance, attackers ran a massive
numbers of queries through the victim’s search engine, bringing the
server down [44].

To circumvent detection, attackers are increasingly moving away from
pure bandwidth floods to stealthy DDoS attacks that masquerade as
flash crowds. They profile the victim server and mimic legitimate Web
browsing behavior of a large number of clients. These attacks target

higher layer server resources like sockets, disk bandwidth, database
bandwidth and worker processes [44, 18, 32]. We call such DDoS at-
tacks CyberSlam, after the first FBI case involving DDoS-for-hire [44].
The MyDoom worm [18], many DDoS extortion attacks [32], and re-
cent DDoS-for-hire attacks are all instances of CyberSlam [44, 32, 17].

Countering CyberSlam is a challenge because the requests originating
from the zombies are indistinguishable from the requests generated
by legitimate users. The malicious requests differ from thelegitimate
ones in intent but not in content. The malicious requests arrive from a
large number of geographically distributed machines; thusthey cannot
be filtered on the IP prefix. Also, many sites do not use passwords or
login information, and even when they do, passwords could beeasily
stolen off the hard disk of a compromised machine. Further, check-
ing the site specific password requires establishing a connection and
allowing unauthenticated clients to access socket buffers, TCBs, and
worker processes, making it easy to mount an attack on the authentica-
tion mechanism itself. Defending against CyberSlam using computa-
tional puzzles, which require the client to perform heavy computation
before accessing the site, is not effective because computing power is
usually abundant in a Botnet. Furthermore, in contrast to bandwidth
attacks [48, 36], it is difficult to detect big resource consumers when
the attack targets higher-layer bottlenecks such as CPU, database, and
disk because commodity operating systems do not support fine-grained
resource monitoring [13, 12, 57]. Further, detecting big resource con-
sumers becomes particularly hard if the attacker resorts tomutating
attacks which cycle between different bottlenecks [34, 33].

This paper proposes Kill-Bots, a kernel extension that protects Web
servers against CyberSlam attacks. It is targeted towards small and
medium online businesses, as well as non-commercial Web sites. Kill-
Bots combines two functionalities: authentication and admission con-
trol.

(a) Authentication: The authentication mechanism is activated during
periods of severe overload. It has two stages.

• In Stage1, Kill-Bots requires each new session to solve a re-
verse Turing test to obtain access to the server. Humans can
easily solve a reverse Turing test, but zombies cannot. We fo-
cus on graphical tests, though Kill-Bots works with other types
of Turing tests. Legitimate clients either solve the graphical
test, or try to reload a few times and, if they still cannot access
the server, decide to come back later. In contrast, the zombies
which want to congest the server continue sending new requests
without solving the test. Kill-Bots uses this difference inbe-
havior between legitimate users and zombies to identify theIP
addresses that belong to zombies and drop their requests. Kill-
Bots uses SYN cookies to prevent spoofing of IP addresses and
a Bloom filter to count how often an IP address failed to solve
a puzzle. It discards requests from a client if the number of its
unsolved tests exceeds a given threshold (e.g., 32 unsolvedpuz-
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Figure 1: Kill-Bots Overview. Note that graphical puzzles are only served
during Stage1.

zles).
• Kill-Bots switches toStage2 after the set of detected zombie

IP addresses stabilizes (i.e., filter does not learn any new bad IP
addresses). In this stage, puzzles are no longer served. Instead,
Kill-Bots relies solely on the Bloom filter to drop requests from
malicious clients. This allows legitimate users who cannot, or
don’t want to, solve graphical puzzles access to the server de-
spite the ongoing attack.

(b) Admission Control: Kill-Bots combines authentication with ad-
mission control. A Web site that performs authentication toprotect
itself from DDoS encounters a general problem: It has a certain pool
of resources, which it needs to divide between authenticating new ar-
rivals and servicing clients that are already authenticated. There is an
optimal balance between these two tasks. Spending a large amount
of resources on authentication might leave the server unable to fully
serve the authenticated clients, and hence, wastes server’s resources
on authenticating new clients that it cannot serve. On the other hand,
spending too many resources on serving the clients reduces the rate
at which new clients are authenticated and admitted into theserver,
which might result in idle periods with no clients in service.

Kill-Bots computes the admission probabilityα that maximizes the
server’s goodput (i.e., the optimal probability with whichnew clients
should be authenticated). It also provides a controller that allows the
server to converge to the desired admission probability using simple
measurements of server’s utilization. Admission control is a standard
mechanism for combating server overload [20, 24, 56, 19, 57,54],
but Kill-Bots examines admission control in the context of malicious
clients and connects it with client authentication.

Fig. 1 shows a block diagram of Kill-Bots. When a new connection
arrives, it is first checked against the list of detected zombie addresses.
If the IP address is not recognized as a zombie, Kill-Bots admits the
connection with probabilityα = f(load). In Stage1, admitted con-
nections are served a graphical puzzle. If the client solvesthe puzzle, it
is given a Kill-Bots HTTP cookie which allows its future connections,
for a short period, to access the server without being subject to ad-
mission control and without having to solve new puzzles. InStage2,
Kill-Bots no longer issues puzzles; admitted connections are immedi-
ately given a Kill-Bots HTTP cookie.

Kill-Bots has a few important characteristics.

• Kill-Bots addresses graphical tests? bias against users who
are unable or unwilling to solve them.Prior work that employs
graphical tests ignores the resulting user inconvenience as well
as their bias against blind and inexperienced humans [41, 6].
Kill-Bots is the first system to employ graphical tests to identify
humans from automated zombies, while limiting their negative
impact on legitimate users who cannot or do not want to solve
them.

• Kill-Bots sends a puzzle without giving access to TCBs or

socket buffers. Typically sending the client a puzzle requires
establishing a connection and allowing unauthenticated clients
to access socket buffers, TCB’s, and worker processes, mak-
ing it easy to DoS the authentication mechanism itself. Ideally,
a DDoS protection mechanism should minimize the resources
consumed by unauthenticated clients. Kill-Bots introduces a
modification to the server’s TCP stack that can send a 1-2 packet
puzzle at the end of the TCP handshake without maintaining
any connection state, and while preserving the semantics ofTCP
congestion control.

• Kill-Bots improves performance, regardless of whether server
overload is caused by DDoS attacks or true Flash Crowds, mak-
ing it thefirst system to address both DDoS and Flash Crowds
within a single framework. This is an important side effect of
using admission control, which allows the server to admit new
connections only if it can serve them.

• The paper presentsa general model of resource consumption
in a server that implements an authentication procedure in the in-
terrupt handler, a standard location for packet filters and kernel
firewalls [38, 47]. We use the model to devise an admission con-
trol scheme that maximizes the server’s goodput by finding the
optimal probability with which new clients should be authenti-
cated. Our model is fairly general and is independent of how the
authentication is performed; the server may be authenticating
the clients by checking their login information, verifyingtheir
passwords, or asking them to solve a puzzle.

• In addition, Kill-Bots requires no modifications to client soft-
ware, is transparent to Web caches, and is robust to attacks in
which the human attacker solves a few graphical tests and dis-
tributes the answer to a large number of zombies.

We implement Kill-Bots in the Linux kernel and evaluate it inthe
wide-area network using PlanetLab. Additionally, we conduct an ex-
periment on human users to quantify user willingness to solve graph-
ical puzzles to access a Web server. On a standard 2GHz Pentium IV
Linux machine with 1GB of memory and 512kB L2 cache running
a mathopd [14] server on top of a modified Linux 2.4.10, Kill-Bots
serves graphical tests in 31µs, blocks malicious clients using the Bloom
filter in less than 1µs, and can survive DDoS attacks of up to 6000
HTTP requests per second without affecting response times.1 Com-
pared to a server that does not use Kill-Bots, our system survives attack
rates 2 orders of magnitude higher, while maintaining response times
around their values with no attack. Furthermore, in our Flash Crowds
experiments, Kill-Bots delivers almost twice as much goodput as the
baseline server and improves response times by 2 orders of magnitude.

2. THE DESIGN OF KILL-BOTS

Kill-Bots is a kernel extension to Web servers. It combines authenti-
cation with admission control.

2.1 Threat Model

Kill-Bots aims to improve server performance under CyberSlam at-
tacks, which mimic legitimate Web browsing behavior and consume
higher layer server resources such as CPU, memory, databaseand
disk bandwidth. Prior work proposes various filters for bandwidth
floods [36, 11, 22, 28]; Kill-Bots does not address these attacks. At-
tacks on the server’s DNS entry or on the routing entries to prevent
1These results are for the traditional event driven system that relies on
interrupts. The per-packet cost of taking an interrupt is fairly large
≈ 10µs [30]. We expect an even better performance with polling
drivers [39].
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Figure 2: A Kill-Bots server transitions between NORMAL and SUS-
PECTED ATTACK modes based on server load.

clients from accessing the server are also outside the scopeof this pa-
per.

We assume the attacker may have full control over an arbitrary num-
ber of machines that can be widely distributed across the Internet. The
attacker may also have arbitrarily large CPU power and memory re-
sources. However, we assume that the server’s link bandwidth and the
device driver are NOT congested by the volume of attack traffic. An
attacker cannot sniff packets on a major link which might carry traf-
fic for a large number of legitimate users. Further, the attacker does
not have access to the server’s local network or physical access to the
server itself. Finally, we assume the zombies cannot solve the graph-
ical test and the attacker is not able to concentrate a large number of
humans to continuously solve reverse Turing tests.

2.2 Authentication

During periods of severe overload, Kill-Bots authenticateclients be-
fore granting them service. The authentication has two stages. First,
Kill-Bots authenticates clients using graphical tests, asshown in Fig. 4.
The objective of this stage is to improve the service experienced by hu-
man users who solve the graphical tests, and to learn the IP addresses
of the automated attack machines. The first stage lasts untilKill-Bots
concludes it has learned the IP addresses of all the zombies partici-
pating in the attack. In the second stage, Kill-Bots no longer issues
graphical tests; instead clients are authenticated by checking that their
IP addresses do not match any of the zombie IP addresses that Kill-
Bots has learned in the first stage. Below, we explain the authentication
mechanism in detail.

2.2.1 Activating the Authentication Mechanism

A Kill-Bots Web-server is in either of two modes,NORMAL or
SUSPECTED ATTACK, as shown in Fig. 2. When the Web server
perceives resource depletion beyond an acceptable limit,κ1, it shifts
to theSUSPECTED ATTACK mode. In this mode, every new con-
nection has to solve a graphical test before allocation of any state
on the server takes place. When the user correctly solves thetest,
the server grants the client access to the server for the duration of
an HTTP session. Connections that begin before the server switched
to theSUSPECTED ATTACK mode continue to be served normally
until they terminate or timeout. However, the server will time out
these connections if they last beyond a certain interval (our imple-
mentation uses 5 minutes). The server continues to operate in the
SUSPECTED ATTACK mode until the load goes down to its normal
range and crosses a particular thresholdκ2 < κ1. The load is es-
timated using an exponential weighted average. The values of κ1

andκ2 will vary depending on the normal server load. For example, if
the server is provisioned to work with 40% utilization, thenone may
chooseκ1 = 70% andκ2 = 50%.

Several points are worth noting. First, the server behavioris unchanged
in theNORMALmode, and thus the system has no overhead in the com-
mon case of no attack. Second, the cost for switching back andforth
between the two modes is minimal. The only potential switching cost

Figure 3: A Kill-Bots server sends a test to a new client without allocating
a socket or any other connection resources.

Figure 4: Screenshot of a graphical puzzle.

<html>
<form method = “GET” action=“/validate”>            

<img src=“PUZZLE.gif”>                               
<input type=“password” name=“ANSWER”>
<input type=“hidden” name=“PUZZLE_ID” value=“[]”>

</form>                                                               

</html>

Figure 5: HTML source for the puzzle

is the need to timeout very long connections that started in theNORMAL
mode. Long connections that started in a priorSUSPECTED ATTACK
mode need not be timed out because their users have already been au-
thenticated.

2.2.2 Stage 1: CAPTCHA-Based Authentication

After switching to theSUSPECTED ATTACK mode, the server enters
Stage1, in which it authenticates clients using graphical tests, i.e.,
CAPTCHAs.

(a) Modifications to Server’s TCP Stack:Upon the arrival of a new
HTTP request, Kill-Bots sends a graphical test and validates the cor-
responding answer sent by the client without allocating anyTCBs,
socket buffers, or worker processes at the server. We achieve this by
a minor modification to the server TCP stack. As shown in Figure 3,
a Kill-Bots server responds to a SYN packet with a SYN cookie.The
client receives the SYN cookie, increases its congestion window to
two packets, transmits a SYNACKACK2 and the first data packet that
usually contains the HTTP request. The server’s kernel doesnot cre-
ate a new socket upon completion of the TCP handshake. Instead the
SYNACKACK packet is discarded because the first data packet from

2Just a plain ACK that finishes the handshake.
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Puzzle ID (P) Random (R) Hash (P, R, C, secret)Creation Time (C)

32 96 32 32

Figure 6: Kill-Bots Token

the client repeats the same acknowledgment sequence numberas the
SYNACKACK. When the server receives the client’s data packet, it
first checks whether is a puzzle answer.3 If the packet does not con-
tain an answer, the server replies with a new graphical test,embedded
in an HTML form (Fig. 5), and immediately closes the connection by
sending a FIN packet. Our implementation uses CAPTCHA images
that fit in 1-2 packets. The server kernel does not wait for theFIN ack.
On the other hand, if the packet is an answer, the kernel checks the
cryptographic validity of the ANSWER (see (c) below). If thecheck
succeeds, a socket is established and the request is delivered to the
application. Note that the above scheme preserves TCP congestion
control semantics, does not require any modifications to client soft-
ware, and prevents attacks that hog TCBs and sockets by establishing
connections that exchange no data. When a human answers the graph-
ical test, the HTML form (Fig. 5) generates an HTTP requestGET
/validate?answer=
ANSWERi that reports the answer to the server.

(b) One Test Per Session:It would be inconvenient if legitimate users
had to solve a puzzle for every new HTTP request or every new TCP
connection. The Kill-Bots server gives an HTTP cookie to a user when
he solves the test correctly. This cookie allows the user to re-enter
the system for a specific period of time. (In our implementation, this
period is set to half an hour). If a new HTTP request is accompanied
by a cryptographically valid HTTP cookie, the Kill-Bots server creates
a socket and hands the request to the application without serving a new
graphical test.

(c) Cryptographic Support: When the Kill-Bots server issues a puz-
zle, it generates a Kill-Bots Token as shown in Fig. 6. The token con-
sists of a 32-bit puzzle IDP , a 96-bit random numberR, the 32-bit
creation timeC of the token, and a 32-bit collision-resistant hash of
P , R, andC along with the server secret. The token is embedded in
the same HTML form as the puzzle (Fig. 6) and sent to the client.

When a user solves the puzzle, the browser reports the answerto the
server along with the Kill-Bots token. The server first verifies the token
by recomputing the hash. Second, the server checks the Kill-Bots to-
ken to ensure the token was created no longer than 4min ago. Next, the
server checks if the answer to the puzzle is correct. If thesechecks are
successful, the server creates a Kill-Bots cookie and givesit to the user.
The Kill-Bots cookie is created from the token by updating the token
creation time and recording the token in the table of valid Kill-Bots
cookies. Subsequently, when a user issues a new TCP connection with
an existing Kill-Bots HTTP cookie, the server validates thecookie by
recomputing the hash and ensuring that the cookie has not expired, i.e.
no more than 30min have passed since cookie creation. The Kill-Bots
server also keeps track of the number of simultaneous HTTP requests
that belong to each cookie.

(d) Protecting Against Copy Attacks: What if the attacker solves a
single graphical test and distributes the HTTP cookie to a large num-
ber of bots? Kill-Bots introduces a notion of per-cookie fairness to
address this issue. Each correctly answered graphical testallows the
client to execute a maximum of 8 simultaneous HTTP requests.Dis-
tributing the cookie to multiple zombies makes them competeamong

3A puzzle answer has an HTTP request of the formGET
/validate?answer=ANSWERi, wherei is the puzzle ID.

themselves for these 8 connections. Most legitimate web browsers
open no more than 8 simultaneous connections to a single server [25].

2.2.3 Stage 2: Authenticating Users Who Do Not Answer

CAPTCHAs

An authentication mechanism that relies solely on CAPTCHAshas
two disadvantages. First, the attacker can force the serverto continu-
ously send graphical tests, imposing an unnecessary overhead on the
server. Second, and more important, humans who are unable orun-
willing to solve CAPTCHAs may be denied service.

To deal with this issue, Kill-Bots distinguishes legitimate users from
zombies by their reaction to the graphical test rather than their ability
to solve it. Once the zombies are identified, they are blockedfrom us-
ing the server. When presented with a graphical test, legitimate users
may react as follows: (1) they solve the test, immediately orafter a
few reloads; (2) they do not solve the test and give up on accessing
the server for some period, which might happen immediately after re-
ceiving the test or after a few attempts to reload. The zombies have
two options; (1) either imitate human users who cannot solvethe test
and leave the system after a few trials, in which case the attack has
been subverted, or (2) keep sending requests though they cannot solve
the test. However, by continuing to send requests without solving the
test, the zombies become distinguishable from legitimate users, both
human and machine.

In Stage1, Kill-Bots tracks how often a particular IP address has failed
to solve a puzzle. It maintains a Bloom filter whose entries are 8-
bit counters.4 Whenever a client is given a graphical puzzle, its IP
address is hashed and the corresponding entries in the Bloomfilter are
incremented. In contrast, whenever a client comes back witha correct
answer, the corresponding entries in the Bloom filter are decremented.
Once all the counters corresponding to an IP address reach a particular
threshold (in our implementationξ = 32), the server drops all packets
from that IP address and gives no further tests to that client.

When the attack starts, the Bloom filter has no impact and users are
authenticated using the graphical puzzles. Yet, as the zombies receive
more puzzles and do not answer them, their counters pile up. Once a
client hasξ unanswered puzzles, it will be blocked. As more zombies
get blocked, the server’s load will decrease and approach its normal
level. Once this happens the server does not need to use the graphical
tests any more. The server no longer issues puzzles; insteadit relies
solely on the Bloom filter to block requests from the zombie clients.
We call this mode of operationStage2. Sometimes the attack rate is so
high that even though the Bloom filter catches all the attack packets,
the overhead of receiving the packets by the device driver becomes
noticeable. If the server notices that both the load is stable and the
Bloom filter is not catching any new zombie IP addresses, thenthe
server concludes that the Bloom filter has caught all attack IP addresses
and switches off issuing puzzles, i.e., the server switchesto Stage2. If
subsequently the load increases, then the server resumes the issuing of
puzzles.

In our experiments, the Bloom filter takes only a few minutes to de-
tect and block all offending clients. In general, the higherthe attack
rate, the faster the Bloom filter will detect the zombies and block their
requests. A full description of the Bloom filter is in§ 4.

2.3 Resource Allocation & Admission Control
4Please refer to [15] for a general description of the Bloom filter.
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Symbol Description
α Admission Probability; Unauthenticated clients are

dropped with prob.1 − α.
λa Arrival rate of attacking HTTP requests
λl Arrival rate of legitimate HTTP requests
λs Arrival rate of legitimate sessions
1

µp
Mean time to serve a puzzle

1

µh
Mean time to serve an HTTP request

ρp Fraction of time the server spends authenticating clients
ρh Fraction of time the server spends serving authenticated

clients
ρi Fraction of time the server is idle
1

q
Mean # of requests per legitimate session

Table 1: Variables used in the analysis

A Web site that performs authentication to protect itself from DDoS
attacks is faced by a general problem. It has a certain pool ofre-
sources, which it needs to divide between authenticating the clients
and servicing the ones already authenticated. There is an optimal bal-
ance between these two functionalities. Spending a large amount of
resources on the authentication might leave the server unable to fully
service the authenticated clients. Hence, the server wastes resources
on authenticating new clients that it cannot serve. On the other hand,
spending too many resources on serving authenticated clients reduces
the rate at which new clients are authenticated and admittedinto the
server, which might result in idle periods with no clients inservice.

In this section, we model a Web server that implements an authenti-
cation procedure in the interrupt handler. This is a standard location
for packet filters and kernel firewalls [47, 38, 4]. It allows dropping
unwanted packets as early as possible. We use the model to devise an
admission control scheme that maximizes the server’s goodput by find-
ing the optimal probability with which new clients should beauthenti-
cated. Our model is fairly general and independent of how theauthen-
tication is performed. The server may be authenticating theclients by
checking their login information, verifying their passwords, or asking
them to solve a puzzle. Furthermore, we do not make any assumption
on the distribution or independence of the interarrival times of legit-
imate sessions, or of attacker requests or of service times.Table 1
shows the variables used in the analysis.

2.3.1 Results of the Analysis

This section summarizes the results of our analysis and discusses their
implications. The detailed derivations are in§ 2.3.2.

The admission probability that maximizes the server’s goodput (the
time spent on serving HTTP requests) is:

α∗ = min

„

qµp

(B + q)λs + qλa
, 1

«

and B =
µp

µh
, (1)

whereλa is the attack request rate,λs is the legitimate users’ session
rate, 1

µp
is the average time taken to serve a puzzle,1

µh
is the aver-

age time to serve an HTTP request, and1

q
is the average number of

requests in a session. When a request from an unauthenticated client
arrives, the server should drop it with probability1 − α∗, and attempt
to authenticate it with probabilityα∗. This yields an optimal server
goodput, which is given by:

ρ∗
g = min

 

λs

qµh
,

λs

(1 + q
B

)λs + q λa

B

!

. (2)
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Figure 7: Comparison of the goodput of a base/unmodified server with
a Kill-Bots server. Server has a legitimate load of 50%. (TOP) Kill-Bots
without admission control. (BOTTOM) Kill-Bots with admiss ion control.
The graphs show that Kill-Bots improves server goodput, is even better
with admission control, particularly at high attack rates.

In comparison, a server that does not use authentication hasgoodput:

ρb
g = min

„

λs

qµh
,

λs

λs + qλa

«

. (3)

But authentication is effective in combating DDoS only whenauthen-
tication consumes less resources than service, i.e.,µp >> µh. Hence,
B >> 1, and the server with authentication can survive attack rates
that are up toB times larger without any loss in goodput.

Also, compareρ∗
g with the goodput of a server which implements au-

thentication without admission control (i.e.,α = 1) given by:

ρa
g = min

„

λs

qµh
, max

„

0, 1 −
λa + λs

µp

««

. (4)

For attack rates,λa > µp, the goodput of the server with no admission
goes to zero, whereas the goodput of the server that uses admission
control decreases more gracefully.

Fig. 7 illustrates the above results; A Pentium-IV, 2.0GHz 1GB RAM,
machine can serve 1-2 pkt puzzles at a peak rate of 6000/sec (µp =
6000). Assume, conservatively, that each HTTP request fetches afile
of size 15KB(µh = 1000), that a user makes about20 requests in a
session(q = 1/20) and the normal server load is about 50%. Fig. 7
qualitatively compares the goodput of a server which does not use ad-
mission control (a base server) with the goodput of a Kill-Bots server
for both the case ofα = 1 andα∗. These are computed using equa-
tions 2, 4, and 3 respectively, for the above parameter values. The
top graph in Fig 7 shows that authentication improves server’s good-
put. The bottom graph shows the additional improvement gained from
adapting the admission probabilityα.

2.3.2 Analysis

(a) Server with no authentication (base server):Let us first ana-
lyze the performance of an attacked Web server that does not use any
authentication mechanism. Fig. 8 shows a model of such server. The
server serves HTTP requests with an average rateµh. Attacking HTTP
requests arrive at a rateλa. Legitimate users/sessions, on the other
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Figure 8: Model of a server that does not use authentication.
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Figure 9: A server that implements some authentication mecha-
nism.

hand, arrive at an average rateλs, where a given session consists of
some random number of HTTP requests. When their HTTP requestis
served, legitimate users either leave the web site with probability q or
send another HTTP request with probability1 − q, (potentially after
some thinking time). At the input to the queue in Fig. 8, the average
rate of legitimate HTTP requests, denotedλl, equals the sum ofλs

plus the rate from the feedback loop of subsequent requests,where the
latter is1 − q times the departure rate from the server of legitimate
HTTP requests, denotedλd:

λl = λs + (1 − q)λd (5)

Given that the server occupancy is less than one, i.e. given that the
offered load can be handled by the server (though possibly with signif-
icant delay), thenλd = λl and solving equation 5 forλl yields:

λl =
λs

q
. (6)

One can view1/q as the mean number of requests per session.

We make some simplifying assumptions. First, the system of Fig. 8 is
in steady state, i.e. for practical purposes we assume that atime inter-
val where the parameters are essentially constant exists. Second, we
assume that the server will process requests if any are present(work-
conserving). However, we do NOT make any assumptions on the dis-
tribution or independence of the interarrival times of legitimate ses-
sions, or of attacker requests or of service times. Under these condi-
tions, the occupancy of the server,ρ, i.e. the fraction of time the server
is busy, will be the offered load, whenever this load is less than 1. Oth-
erwise,ρ will be capped at 1. The offered load is the arrival rate of
requestsλa + λl times the mean service time1

µh
, thus

ρ = min

„

1

µh
(λa +

λs

q
), 1

«

. (7)

The goodput of the server is the fraction of the occupancy dueto pro-
cessing legitimate requests:

ρb
g =

λs/q

λs/q + λa
ρ =

λs

λs + qλa
ρ. (8)

When there are no attackers, the server’s goodput is simply its occu-
pancy, which is λs

qµh
. However for large attack rates, the server’s good-

put decreases proportionally to the attack rate. Moreover,for offered
loads greater than one, the goodput could degrade further depending
on how the real system handles congestion.

(b) Server provides authentication:Next, we present a general model
of the performance of a server that implements some authentication
mechanism. Fig. 9 illustrates the model. The server dividesits time
between authenticating new clients and serving the ones already au-
thenticated. A new client is admitted to the authenticationphase with
a probabilityα that depends on the occupancy of the server, i.e., how
busy the server is. Authentication costs1

µp
cpu time. (When applied

to Kill-Bots, 1

µp
, is the average time to send a graphical test). Other

parameters are same as before. The server spends a fraction of time,
ρp, on authenticating clients, and a fraction of time,ρh, serving HTTP
requests from authenticated clients. Since the server serves HTTP re-
quests only from authenticated clients, the goodput,ρg equalsρh.

Using the same general assumptions as for Fig. 8, we wish to deter-
mine the value of the admit probability,α∗, that maximizes the good-
put, ρh, given the physical constraint that the server can not be busy
more than 100% of the time. That is:

max
0≤α≤1

ρh (9)

such thatρp + ρh ≤ 1, (10)

and given constraint 10:ρp = α
λa + λs

µp
(11)

ρh = α
λs

q µh
(12)

Since the goodputρh is increasing inα, (Eq. 12), we would want to
makeα as big as possible, subject to the constraint (10). Considerfirst
the simple case whereρp + ρh is strictly less than 1 even when all
clients are admitted to the authentication step, i.e.,α = 1. Then the
optimal choice forα, denotedα∗, is 1, and the maximal goodputρ∗

g

is λs

q µh
. For the more interesting case, now suppose that the constraint

(10) would be binding at some value ofα less than or equal to one. The
value ofα at which the constraint first becomes binding is the largest
feasible value forα, and thus is the value that maximizes the goodput.
Substituting Eq. 11 and 12 intoρp + ρh = 1 and solving forα yields
the maximizing value. Summarizing the two cases, the optimal value
for the admission probability is:

α∗ = min

„

qµp

(B + q)λs + qλa
, 1

«

and B =
µp

µh
. (13)

Substitutingα∗ into (12) yields the maximal goodput:

ρ∗
g = ρ∗

h = min

„

Bλs

(B + q)λs + qλa
,

λs

qµh

«

. (14)

Note that since the authentication is performed in the interrupt handler,
it preempts serving HTTP requests. The expressions for occupancy
Eq. 11 and 12 can incorporate the constraint Eq. 10 as:

ρp = min(α
λa + λs

µp
, 1), (15)

ρh = min(α
λs

q µh
, 1 − ρp). (16)

Settingα to 1 in Eq. 15 and 16 yields the goodput,ρa
g = ρh, obtained

when the web server tries to authenticate all new clients regardless of
the offered load.
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Figure 10: Phase plot showing how Kill-Bots adapts the admission prob-
ability to operate at a high goodput

2.4 Adaptive Admission Control

How to run the server at the optimal admission probability? To com-
puteα∗ from Eq. 1 requires values for parameters that are typically
unknown at the server and change over time, such as the attackrate,
λa, and the legitimate session rate,λs. We devise an adaptive scheme
that gradually changes the admission probabilityα based on measure-
ments of the server’s idle cycles. The model of Fig. 9 assumesthe CPU
has only two tasks: authentication and serving requests. However, in
practice where there are other tasks it is important that theadaptive
control leave some idle cycles and not attempt for 100% occupancy.
Let ρi denote the fraction of time the server is idle. And still consider-
ing only the task of serving puzzles and requests, we have:

ρh + ρp + ρi = 1. (17)

If the current admission probabilityα > α∗, the server spends more
resources than necessary authenticating new clients. Legitimate users
already in the system starve, and the server runs out of idle cycles. On
the other hand, ifα < α∗, the server issues fewer puzzles than neces-
sary, admits fewer legitimate users and goes idle. Thus, if the server
is experiencing idle times above some threshold, it should increase its
value ofα, otherwise it should decrease it. To determine how much the
server should increase/decreaseα, we note that givenα < α∗, there
will be some idle cycles and by substituting Eq. 11 and 12 in Eq. 17:

∀α < α∗ : α

„

λa + λl

µp
+

λl

qµh

«

= 1 − ρi.

Hence,

∀α1, α2 < α∗ :
α1

α2
=

1 − ρ1
i

1 − ρ2
i

. (18)

Thus, we can increaseα proportionally to the non-idle cycles (i.e. the
occupancy).

We use Fig. 10 to argue the rationale underlying the design ofour
adaptive admission controller. The figure shows therelation between
the fraction of time spent on authenticating clientsρp and that spent
serving HTTP requestsρh. The line labeled “Zero Idle Cycles” refers
to the states in which the system is highly congestedρi = 0 → ρp +
ρh = 1. The line labeled “Underutilized” refers to the case in which
the system has some idle cycles, in which case, taking the ratio of

Eq. 11 and 12 leads toρh =
“

λs

λs+λa

µp

qµh

”

ρp. As the fraction of

time the system is idleρi changes, the system state moves along the

solid line segments A→B→C. Ideally, one would like to operate the
system at point B which maximizes the system’s goodput,ρg = ρh,
and corresponds toα = α∗. However, it is difficult to operate at point
B because the system cannot tell whether it is at B or not; all points
on the segment B-C exhibitρi = 0. It is easier to stabilize the system
at point E where the system is slightly underutilized because small
deviations from E exhibit a change in the value ofρi, which we can
measure. We pick E such that the fraction of idle time at E isβ = 1

8
.

Thus, every T=10s, we adapt the admission probability according to
the following rules:

∆α =

8

>

>

<

>

>

:

γ1α
ρi−β
1−ρi

, ρi ≥ β

−γ2α
β−ρi

1−ρi
, 0 < ρi < β

−γ3α. ρi = 0

(19)

whereγ1, γ2, andγ3 are constant parameters, which Kill-Bots set to
1

8
, 1

4
, and 1

4
respectively. The above rules allow us to moveα propor-

tionally to how far we are from the chosen equilibrium point E, unless
the system has no idle cycles in which case we decrease the admission
probability aggressively to go back to the stable regime around point
E.

3. SECURITY ANALYSIS

In this section, we discuss Kill-Bots’s ability to handle a variety of
attacks from a determined adversary.

(a) Socially-engineered attack:In a socially-engineered attack, the
adversary tricks a large number of humans to solve graphicalpuz-
zles on her behalf. Recently, spammers employed this tacticto bypass
graphical tests used by Yahoo and Hotmail to prevent automated cre-
ation of email accounts [7]. The spammers opened and advertised a
Web site containing pornography. Visitors to the porn site were asked
to enter the word contained in a CAPTCHA graphic before they were
granted access. The porn site downloaded its CAPTCHAs from Yahoo
or Hotmail email creation Web page, presented them to the porn site
visitors, and used the answers to create new email accounts.

We argue that Kill-Bots is much more resilient against socially en-
gineered attacks than the CAPTCHA system used by email creation
sites. In contrast to email account creation where the client is given an
ample amount of time to fill in the registration form and solvethe puz-
zle, puzzles in Kill-Bots expire 4 minutes after they have been served.
Thus, the attacker cannot accumulate a sufficient amount of answers
from human users to mount an attack with a rate high enough for
Denial-of-Service. The attacker needs a continuous streamof visitors
to his porn site. Indeed, a stream of visitors to the porn siteis a neces-
sary but not sufficient condition. The attacker needs to control a porn
server at least as popular as the victim Web server. Recall, that Kill-
Bots employs a loose form of fairness among authenticated clients; it
allows each of them a maximum of 8 parallel connections. Because of
this relatively fair treatment of authenticated clients, the attacker needs
to maintain the number of authenticated malicious clients larger than
that of legitimate users, so that she can grab most of the server’s re-
sources. Such a popular porn site is an asset. It is unlikely that the
attacker will be willing to jeopardize her popular porn site(or other
popular servers) to DDoS an equally or less popular Web site.Fur-
thermore, one should keep in mind that security is a moving target; by
forcing the attacker to resort to socially engineered attacks, we made
the attack harder and the probability of being arrested higher.

(b) Polluting the Bloom filter: The attacker may try to spoof the IP
address and pollute the entries in the Bloom filter, causing Kill-Bots
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to mistake legitimate users as a malicious. This attack however is not
possible because the Bloom filter entries are incremented when the
client is sent a puzzle, and decremented when Kill-Bots receives an
answer from the client. Both events require a SYN cookie check first.

(c) Copy attacks: In a copy attack, the adversary solves one graph-
ical puzzle, obtains the corresponding HTTP cookie, and distributes
it to many zombie machines to give them access to the Web site.It
might seem that the best solution to this problem is to include a secure
one-way hash of the IP address of the client in the cookie. Unfortu-
nately, this approach does not deal well with proxies or mobile users.
Kill-Bots protects against copy attacks by limiting the number of in-
progress requests per puzzle answer (our implementation sets this limit
to 8).

(d) Replay attack: A session cookie includes a secure hash of the
time it was issued, is only valid during a certain time interval, and
only covers up to eight simultaneous accesses. If an adversary tries to
replay a session cookie outside its time interval it gets rejected. An at-
tacker may solve one puzzle and attempt to replay the “answer” packet
to obtain many more Kill-Bots cookies. Recall that Kill-Bots issues
a cookie for a valid answer only if it is accompanied with a valid To-
ken (Fig 6). Further, the cookie is an updated version of the token.
Hence, replaying the “answer” packet yields the same cookie.

(e) Collecting a database of all graphical puzzles and theiran-
swers: The adversary might try to collect all possible puzzles and the
corresponding answers. When a zombie receives a puzzle, it searches
its database, find the corresponding answer, and send it backto the
server. To protect from this attack, Kill-Bots assumes the presence of
a large number of puzzles, that are periodically replaced with a new
set. Generation of the graphical puzzles is relatively easy[55], and
can either be done on the web server itself in periods of inactivity (at
night) or on a different machine dedicated for this purpose.Also puz-
zles may be purchased from a trusted third party. Since the space of all
possible graphical puzzles is huge, building a database of these puzzles
and their answers is a daunting task. Making this database available to
the zombies, and ensuring they can search it and obtain answers within
the 4 minute lifetime window of a puzzle is very difficult.

(f) DoS attack on the authentication mechanism:Kill-Bots is highly
robust against DDoS attacks on the authentication code. As stated
earlier, Kill-Bots does not allow unauthenticated clientsto access any
connection state such as TCBs or sockets. The computationalcost of
authenticating a client is dominated by the cost of interrupts. Serving
a puzzle incurs a total computational overhead of only≈ 40µs.

(g) Concerns regarding in-kernel HTTP header processing:Kill-
Bots does not parse HTTP headers; it pattern matches the argument to
theGET and theCookie: fields against the fixed stringvalidateand
against a 192-bit Kill-Bots cookie respectively. The pattern-matching
is done in-place, i.e. without copying the data and is inexpensive; less
than8µs ( § 5.1.2) per request.

(h) Breaking the CAPTCHA: Prior work on automatically solving
simple CAPTCHAs exists [42], but such programs are not widely avail-
able to the public for security reasons [42]. However, when CAPTCHAs
can be broken, Kill-Bots can switch to another kind as long asthey fit
in a few packets.

4. KILL-BOTS SYSTEM ARCHITECTURE

User Space

Kernel

Web  Server
Web Server

NET

Memory
Bloom Filter Cookie Table

Kernel
Network 
Stack

Puzzle Table

Request Filter

Puzzle Manager

Figure 11: A Modular representation of the Kill-Bots code.

Kill-Bots is implemented as a kernel update with key components il-
lustrated in Fig. 11. We provide a high level description of these com-
ponents and omit the details for lack of space.

(a) The Puzzle Managerconsists of two components. First, a user-
space stub that asynchronously generates new puzzles and notifies the
kernel-space portion of the Puzzle Manager of their locations. Gen-
eration of the graphical puzzles is relatively easy [2], andcan either
be done on the web server itself in periods of inactivity (at night) or
on a different machine dedicated for this purpose. Also puzzles may
be purchased from a trusted third party. The second component is a
kernel-thread that periodically loads new puzzles from disk into the
Puzzle Table in memory that the Request Filter then distributes to new
sessions.

(b) The Request Filter (RF) processes every incoming TCP packet
addressed to port 80. It is implemented in the bottom half of the inter-
rupt handler to ensure that unwanted packets are dropped as early as
possible.

Fig. 12 provides a flowchart representation of the RF code. When a
TCP packet arrives for port 80, the RF first checks whether it belongs
to an established connection in which case the packet is immediately
queued in the socket’s receive buffer and left to standard kernel pro-
cessing. Otherwise the filter checks whether the packet starts a new
connection (i.e., is it a SYN?), in which case, the RF replieswith a
SYNACK that contains a standard SYN cookie. If the packet is not a
SYN, we examine whether it contains any data; if not, the packet is
dropped without further processing. Next, the RF performs two inex-
pensive tests in an attempt to drop unwanted packets quickly; it hashes
the packet’s source IP address and checks whether the corresponding
entries in the Bloom filter have all exceededξ unsolved puzzles, in
which case the packet is dropped. Otherwise, the packet goesthrough
admission control and is dropped with probability1−α. If the packet
passes all of the above checks, we need to look for 4 differentpossi-
bilities: (1) this might be the first data packet from an unauthenticated
client, and thus we should send it a puzzle and terminate the connection
immediately; (2) this might be a packet from a client which has already
received a puzzle and is coming back with an answer. In this case, we
need to verify the answer and assign the client an HTTP cookie, which
allows it access to the server for a prolonged period of time;(3) Or it
is an authenticated client which has a Kill-Bots HTTP cookieand is
coming back to retrieve more objects; (4) If none of the aboveis true
then the packet should be dropped. These checks are ordered accord-
ing to their increasing cost to allow the system to shed away attack
clients with as little cost as possible.
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Figure 13: Our experimental setup.

(c) The Puzzle Tablemaintains the puzzles available to be served
to users. We implement a simple mechanism to avoid races between
writes and reads to the puzzle table by dividing the Puzzle Table into
two memory regions, a write window and a read window. The Re-
quest Filter fetches puzzles from the read window, while thePuzzle
Manager loads new puzzles into the write window. Once the Puzzle
Manager completes loading all puzzles, the read and write windows
are swapped atomically.

(d) The Cookie Tablemaintains the number of connections that are in
progress for each Kill-Bots cookie. When this number reaches 8, no
further connections are allowed for that cookie.

(e) The Bloom Filter counts unanswered puzzles for each IP address,
allowing the Request Filter to block requests from IPs with more thanξ
unsolved puzzles. (Our implementation setsξ = 32). Usually, Bloom
filters are characterized by two parameters; the number of entries N
in the array and the number of hash functionsk that map keys onto
elements of the array. Our implementation usesN = 220 andk = 2.
Since a potentially large set of keys, in our case 32 bit IP addresses,
are mapped onto much smaller storage, Bloom filters are essentially
lossy. This means that there is a non-zero probability that all k counters
corresponding to a legitimate user pile up toξ due to collisions with
attackers (false positives). Assuminga distinct attacker zombies and
uniformly random hash functions, the probability a legitimate client
is classified as an attacker is approximately(1 − e−ka/N)k ≈ ( ka

N
)k.

Given our chosen values forN andk, this probability for 75,000 attack
machines is0.023.

5. EVALUATION

We have a Linux-based kernel implementation of Kill-Bots, which we
evaluate in the wide-area network using PlanetLab.

5.1 Experimental Environment

Function CPU Latency
Bloom Filter Access .7 µs

Processing HTTP Header 8 µs
SYN Cookie Check 11µs

Serving puzzle 31µs

Table 2: Kill-Bots Microbenchmarks

(a) Web Server:The web server is a standard 2GHz Pentium IV Linux
machine with 1GB of memory and 512kB L2 cache running an unmod-
ified mathopd [14] server on top of a modified Linux 2.4.10 kernel.5

In our implementation of Kill-Bots, we modified about 300 lines of
kernel code, mostly in the TCP/IP protocol stack. The puzzleman-
ager, the bloom filter and the adaptive controller are implemented in
an additional 500 lines. To obtain realistic server workload, we repli-
cate both static and dynamic content served by two web-sites, our lab’s
Web server and a Debian mirror server.

(b) Modeling Request Arrivals: Legitimate clients generate requests
by replaying HTTP traces collected at our Lab’s Web server and a De-
bian mirror server. Multiple segments of the same long traceare played
simultaneously to control the load generated by legitimateclients. An
attacker issues requests at a desired rate by randomly picking a URI
(static/dynamic) from a list of content available on the server. The re-
sults presented herein are for the case when zombie request arrivals are
CBR (constant bit rate). Attack requests with Poisson arrivals exhibit
qualitatively similar results.

(c) Experiment Setup: We evaluate Kill-Bots in the wide-area net-
work using the setup in Fig. 13. The Web server is connected toa
100Mbps local Ethernet. We launch CyberSlam attacks from 100 dif-
ferent nodes on PlanetLab using different port ranges to simulate mul-
tiple attackers per node. Each PlanetLab node simulates up to 256
zombies, which results in a total of 25,600 attack clients. We emulate
legitimate clients on multiple machines connected to our local network
to ensure that any difference in their performance is due to the service
they receive from the Web server, rather than wide-area pathvariabil-
ity.

(d) Emulating Clients: We use WebStone2.5 [3] to emulate both le-
gitimate Web clients and attackers. WebStone is a benchmarking tool
that issues HTTP requests to a web-server given a specific distribution
over the requests, and reports statistics. We extended WebStone in two
ways. First, we added support for HTTP sessions, cookies, and for
replaying requests from traces. Second, we need the clientsto issue
requests at specific rates independent of how the web-serverresponds
to the load. For this, we rewrote WebStone’s networking codeusing
libasync [37], an asynchronous socket library. We increased the kernel
limit on file descriptors per processfdlimit to 40960 on each of our
local machines, to emulate large numbers of legitimate users using few
machines. Since, PlanetLab nodes have a rigidfdlimit of 4096, we
scaled the number of zombies by using many more nodes.

5.1.1 Metrics

We evaluate Kill-Bots by comparing the performance of a baseserver
(i.e., a server with no authentication) with its Kill-Bots mirror operat-
ing under the same conditions. Server performance is measured using
these metrics:

(a) Goodput of legitimate clients: This is the amount of bytes per
second delivered toall legitimate client applications. Goodput ignores
5We picked mathopd because of its simplicity.
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Figure 14: Kill-Bots under CyberSlam: Goodput and average response time of legitimate users at different attack rates for both a base server and its
Kill-Bots version. Graphs show that Kill-Bots substantially improves server’s performance under high attack rates.

TCP retransmissions and is averaged over 30s windows.
(b) Response times of legitimate clients:Response time is the elapsed
time before a request is completed or timed out. We timeout incom-
plete requests after 1 minute.
(c) Cumulative number of legitimate requests dropped:This met-
ric measures the total number of legitimate requests dropped since the
beginning of the experiment until the current time.

5.1.2 Microbenchmarks

We run microbenchmarks on the Kill-Bots kernel to measure the time
taken by the various modules. We use the x86rdtsc instruction
to obtain fine-grained timing information;rdtsc reads a hardware
timestamp counter that is incremented once every CPU cycle.On our
2GHz web-server, this yields a resolution of0.5 nanoseconds. The
measurements are for CAPTCHAs of 1100 bytes.

Table 2 shows our microbenchmarks. The overhead resulting from
sending a graphical puzzle is≈ 40µs (processing http header +serve
puzzle), which means that the CPU can process puzzles fasterthan
the time to transmit a 1100B puzzle on our 100Mb/s Ethernet. How-
ever, the authentication cost is dominated by standard kernel code for
processing incoming TCP packets, mainly the interrupts (≈ 10µs per
packet [30], about 10 packets per TCP connection). Thus, theCPU
is the bottleneck for authentication and as shown in§ 5.4, performing
admission control based on CPU utilization is beneficial.

Note also that checking the Bloom filter is much cheaper than other
operations including the SYN cookie check. Furthermore, neither
the SYN cookie check nor the HTTP header processing can be done
at line-speed (i.e., for 100Mb/s requests). Hence, for incoming re-
quests, we perform the Bloom filter check before the SYN cookie
check (Fig. 16). InStage2, the Bloom filter drops all zombie requests;
hence the performance of Kill-Bots is limited by the cost forinterrupt
processing and device driver access. We conjecture that using polling-
based drivers [30, 39] will improve performance at high attack rates.

5.2 Performance of Kill-Bots under CyberSlam

We evaluate the performance of Kill-Bots under CyberSlam attacks,
using the setting described in§ 5.1. We assume that zombies cannot
solve CAPTCHAs. We also assume only 60% of the legitimate clients
solve the CAPTCHAs; the others are either unable or unwilling to
solve them. This is supported by the results in§ 5.6.

Fig. 14 compares the performance of Kill-Bots with a base (i.e., un-
modified) server, as a function of increased attack request rate. Fig. 14a
shows the goodput of both servers. Each point on the graph is the av-
erage goodput of the server in the first twelve minutes after the begin-
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Figure 15: Comparison of Kill-Bots’ performance to server with no at-
tack when only 60% of the legitimate users solve puzzles. Attack lasts from
600s to 2400s. (a) Goodput quickly improves once bloom catches all attack-
ers. (b) Response times improve as soon as the admission control reacts to
the beginning of attack. (c) Admission control is useful both in Stage1 and
in Stage2, after bloom catches all zombies. Puzzles are turned off as soon
as Kill-Bots entersStage2 improving goodput.

ning of the attack. A server protected by Kill-Bots endures attack rates
multiple orders of magnitude higher than the base server. Atvery high
attack rates, the goodput of the Kill-Bots server decreasesas the cost
of processing the interrupts becomes excessive. Fig. 14b shows the
response time of both web servers. The average response timeexperi-
enced by legitimate users increases dramatically when the base server
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is under attack. In contrast, the average response time of users access-
ing the server using Kill-Bots is unaffected by the ongoing attack.

Fig. 15 shows the dynamics of Kill-Bots during a CyberSlam attack,
with λa = 4000 req/s. The figure also shows the goodput and mean
response time with no attack, as a reference. The attack begins att =
600s and ends att = 2400s. At the beginning of the attack, the good-
put decreases (Fig. 15a) and the mean response time increases (Fig. 15b).
Yet, quickly the admission probability decreases (Fig. 15c), causing
the mean response time to go back to its value when there is no at-
tack. The goodput however stays low because of the relatively high
attack rate, and because many legitimate users do not answerpuzzles.
After a few minutes, the Bloom filter catches all zombie IPs, caus-
ing puzzles to no longer be issued (Fig. 15c). Kill-Bots now moves
to Stage2 and performs authentication based on just the Bloom fil-
ter. This causes a large increase in goodput (Fig. 15a) due toboth
the admission of users who were earlier unwilling or unable to solve
CAPTCHAs and the reduction in authentication cost. In this experi-
ment, despite the ongoing CyberSlam attack, Kill-Bots’ performance
in Stage2 (t = 1200s onwards), is close to that of a server not under
attack. Note that the normal load significantly varies with time and the
adaptive controller (Fig. 15c) reacts to this load betweent = 1200s
andt = 2400s keeping response times low, yet providing reasonable
goodput.

5.3 Kill-Bots under Flash Crowds

We evaluate the behavior of Kill-Bots under a Flash Crowd. Weemu-
late a Flash Crowd by playing our Web logs at a high speed to generate
an average request rate of 2000 req/s. The request rate when there is
no flash crowd is 300 req/s. This matches Flash Crowd request rates
reported in prior work [25]. In our experiment, a Flash Crowdstarts at
t = 1200s and ends att = 3000s.

Fig. 16 compares the performance of the base server against its Kill-
Bots mirror during the Flash Crowd event. The figure shows thedy-
namics as functions of time. Each point in each graph is an average
measurement over a 30s interval. We first show the total throughput
of both servers in Fig. 16a. Kill-Bots has slightly lower throughput for
two reasons. First, Kill-Bots attempts to operate atβ = 12% idle cy-
cles rather than at zero idle cycles. Second, Kill-Bots usessome of the
bandwidth to serve puzzles. Fig. 16b reveals that the throughput fig-
ures are misleading; though Kill-Bots has a slightly lower throughput
than the base server, its goodput is substantially higher (almost 100%
more). This indicates that the base server wasted its throughput on
retransmissions and incomplete transfers, whereas Kill-Bots used its
admission control policy to prevent server’s overload. This is further
supported by the results in Fig. 16c and 16d, which show that Kill-Bots
drastically reduces the average response time and the average time for
connection establishment.

That Kill-Bots improves server performance during Flash Crowds might
look surprising. Although all clients in a Flash Crowd can answer the
graphical puzzles, Kill-Bots computes an admission probability α such
that the system only admits users it can serve. In contrast, abase server
with no admission control accepts additional requests intothe system
even when it is overloaded, which decreases throughput and response
time. Fig. 16e supports this argument by showing how the admission
probabilityα changes during the Flash Crowd event to allow the server
to shed away the extra load.

Finally, Fig. 17 shows the cumulative number of dropped requests and
dropped sessions during the Flash Crowd event for both the base server

 0

 20

 40

 60

 80

 100

 120

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

T
hr

up
ut

 (
M

bp
s)

Experiment Time (secs)

 Base Thruput
 Kill-Bots Thruput

(a) Throughput of the server

 0

 20

 40

 60

 80

 100

 120

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

G
oo

dp
ut

 (
M

bp
s)

Experiment Time (secs)

 Base Goodput
 Kill-Bots Goodput

(b) Average goodput of users

 0

 5

 10

 15

 20

 25

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

R
es

po
ns

e 
T

im
e 

(s
ec

s)

Experiment Time (secs)

 Base Response time
 Kill-Bots Response time

(c) Average response time perceived by users

 0

 1

 2

 3

 4

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

C
on

ne
ct

 T
im

e 
(s

ec
s)

Experiment Time (secs)

 Base Connect time
 Kill-Bots Connect time

(d) Average time for connection establishment

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  750  1500  2250  3000  3750  4500

A
dm

is
si

on
 P

ro
ba

bi
lit

y

Time(secs)

 Kill-bots Server 

(e) Admission probability at the server

Figure 16: Kill-Bots under Flash Crowds: The Flash Crowd event begins
at t = 1200s and ends att = 3000s. Though the throughput of Kill-Bots
is slightly lower than that of the base server, its Goodput ismuch higher
and its average reponse time is much lower.

and the Kill-Bots server. Interestingly, the figure shows that Kill-Bots
drops more sessions but fewer requests than the base server.The base
server accepts new sessions more often than Kill-Bots but keeps drop-
ping their requests. Kill-Bots drops sessions early duringthe authen-
tication phase, but once a session is admitted it is given a Kill-Bots
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Figure 17: Cumulative numbers of dropped requests and dropped ses-
sions under a Flash Crowd event lasting fromt = 1200s to t = 3000s.
Kill-Bots adaptively drops sessions upon arrival, ensuring that accepted
sessions obtain full service, i.e. have fewer requests dropped.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1000  2000  3000  4000  5000  6000  7000

G
oo

dp
ut

 (
M

bp
s)

Attack Rate (reqs/sec)

Goodput vs Attack Rate

Server with Authentication and Admission Control
Server with Authentication
Base Server under Attack

Figure 18: Server goodput substantially improves with adaptive admis-
sion control. Figure is similar to Fig. 7 but is based on wide-area experi-
ments rather than analysis. (For clarity, the Bloom filter is turned off in
this experiment.)

cookie which allows it access to the server for the next half an hour.

5.4 Importance of Admission Control

In § 2.3.1, using a simple model, we showed that authentication is not
enough, and good performance requires admission control. Fig. 18
provides experimental evidence that supports adapting theadmission
probability and our analysis in§ 2.3. The figure compares the goodput
of a version of Kill-Bots that uses only puzzle-based authentication,
with a version that uses both puzzle-based authenticaiton and admis-
sion control. We turn off the Bloom filter in these experiments because
we are interested in measuring the goodput gain obtained only from
admission control. The results in this figure are fairly similar to those
in Fig. 7. It shows that admission control dramatically increases server
goodput. Further, the goodput of the server that uses admission control
decreases more gracefully with increased attack rates.

5.5 Impact of Different Attack Strategies

The attacker might try to increase the severity of the attackby pro-
longing the time until the Bloom filter has discovered all attack IPs
and blocked them, i.e., prolonging the time until the systemtransitions
from Stage1 to Stage2. To do so, the attacker needs to slowly use
the set of IP addresses in her Botnets, keeping fresh IPs for as long as
possible. We show however, that the attacker does not gain much by
using her IP zombie addresses slowly. Indeed, there is a tradeoff be-
tween using all zombie IPs quickly to create a severe attack for a short
period, and using them slowly to prolong a milder attack.

Fig. 19 shows the performance of Kill-Bots under two attack strategies;
A fast strategy in which the attacker introduces a fresh zombie IP every
2.5 seconds, and a slow strategy in which the attacker introduces fresh
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Figure 19: Comparison between 2 attack strategies; A fast strategy that
uses all fresh zombie IPs in a short time, and a slow strategy that consumes
fresh zombie IPs slowly. Graphs show a tradeoff; the slower the attacker
consumes the IPs, the longer it takes the Bloom filter to detect all zom-
bies. But the attack caused by the slower strategy though lasts longer has
a milder impact on the goodput and response time.

Case Fraction of Users
Answered puzzle 55%
Did not answer puzzle 45%
Interested surfers who answered puzzle74%

Table 3: The percentage of users who answered a graphical puzzle to
access the Web server. We define interested surfers as those who access
two or more pages on the Web site.

a zombie IP every 5 seconds. In this experiment, the total number of
zombies in the Botnet is 25000 machines, and the aggregate attack rate
is constant and fixed atλa = 4000 req/s. The figure shows that the fast
attack strategy causes a short but high spike in mean response time,
and a substantial reduction in goodput that lasts for a shortinterval
(about 13 minutes), until the Bloom filter catches the zombies. On
the other hand, the slow strategy affects the performance for a longer
interval (about 25 minutes) but has a milder impact on goodput and
mean response time.

5.6 User Willingness to Answer CAPTACHAs

We conducted a user study to evaluate the willingness of users to solve
CAPTCHAs. We instrumented our research group’s Web server to
present puzzles to 50% of all external accesses to theindex.htmlpage.
Clients that answer the puzzle correctly are given an HTTP cookie that
allows them access to the server for an hour. The brief experiment
lasted from Oct. 3 until Oct. 7. During that period, we registered a
total of 973 accesses to the page, from 477 distinct IP addresses.

We want to compute the fraction of human users that solve graphical
puzzles to access the server. When a client fails to solve thepuzzle,
we need to determine whether the client is a frustrated humanor an
automated script. Some automated requests are easy to identify be-
cause the User Agent Field in the HTTP request states it is a robot(e.g.
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Googlebot); others are not so easily identified.

We compute two types of results. First, we filter out requestsfrom
known robots and compute the fraction of clients who answered our
puzzles. We find that 55% of all clients answered the puzzles.As
explained above, this number underestimates the fraction of humans
that answered the puzzles. Second, we distinguish between clients who
check only the group’s main page and leave the server, and those who
after accessing the main page follow one of the links therein. We call
the latterinterested surfers. We would like to check how many of the
interested surfers answered the graphical puzzle because these users
probably bring more value to the Web site. To answer this question we
apply the standard Bayes’ rule:

Pr[A/B] =
Pr[A, B]

Pr[B]
,

where, event A is “user solves CAPTCHA” and event B is “user is
an interested surfer”. Using the information in the logs andreplacing
probabilities by the fraction of users, we find thatPr[B] = 0.507, P r[A, B] =
0.381 and thus, the probability that an interested surfer answersthe
puzzle is0.381/0.507 which is 74%. Tab. 3 summarizes our results.
These results may not be representative of users in the Internet, as the
behavior of user populations may differ from one server to another.

6. RELATED WORK

Related work falls into the following areas.

(a) Denial of Service:Much prior work on DDoS exists; It describes
specific attacks (e.g., SYN flood [45], the Smurf attack [16],reflector
attacks [43]), and presents detection techniques, or proposes specific
solutions and countermeasures. In particular, Moore et al.[40] propose
the backscatter technique, which detects DDoS instances bymonitor-
ing traffic sent to unused segments of the IP address space. Savage et
al. [48] propose a traceback mechanism that allows the victim of a DoS
attack to trace the offending packets to their source. Otherresearchers
propose variations on the traceback idea to make it applicable to at-
tacks with a small number of packets [9, 49, 58]. Gil et al [22]detect a
bandwidth flood attack against a Web server by comparing the number
of packets from client to server with those from server to client. An-
derson et al. propose a modified Internet architecture that protects a
destination from unwanted traffic. Only packets with the right capabil-
ities are delivered to the destination [11]. The pushback [36] proposal
modifies the routers to detect big bandwidth consumers and propagate
this information toward upstream routers to throttle the traffic closer
its the source. Juels and Brainard propose to use computational client
puzzles to counter SYN flood attacks [26]. In addition, a few com-
mercial filters exist such as Webscreen which uses heuristics to detect
abnormal traffic and attack patterns [31, 8, 5].

Recently, researchers have proposed to use overlays as distributed fire-
walls [10, 28]. The server IP address is known only to the overlay.
Clients who want to access the server have to go through the over-
lay nodes, which check the incoming packets and apply any necessary
filtering. The authors of [41] extend the overlay approach touse graph-
ical Turing tests.

(b) CAPTCHAs: Our authentication mechanism uses graphical tests
or CAPTCHAs. Von Ahn et. al [55] and several others [29, 46,
21] proposed to use CAPTCHAs to identify humans from machines.
CAPTCHAs are currently a popular user authentication mechanism
used by many online businesses and free Web mail providers (e.g. [6,
1]). Morein et. al [41] proposed to use CAPTCHAs for protecting

from DDoS attacks. Our work differs from theirs as we use CAPTCHAs
only as an intermediate step to detect the offending IP addresses and
discard their packets. Furthermore, we combine authentication with
admission control and focus on efficient kernel implementation.

(c) Flash Crowds and Server Overload:The authors of [20, 24, 56,
19, 57] discuss the importance of admission control in improving the
performance of servers under overload and propose various admission
control schemes. Also, much prior work has looked at extensions to
the operating system that allow better resource managementand im-
proved server performance during periods of overload [12, 54, 13].
In addition, Jamjoom et. al [25] propose persistent dropping of TCP
SYN packets in routers to tackle Flash Crowds. Finally, A number of
paper propose to use overlays and peer-to-peer networks to shed load
off servers during Flash Crowds [27, 50, 52].

7. LIMITATIONS & OPEN ISSUES

A few limitations and open issues are worth discussing. First, Kill-
Bots interacts in a complex way with Web proxies. If all clients be-
hind the proxy are legitimate users, then the existence of the proxy has
no impact on the clients’ surfing experience. In contrast, ifa zombie
shares the proxy with legitimate clients and uses the proxy to mount
an attack on the Web server, Kill-Bots will learn the proxy’sIP address
and block all requests from that proxy, including the ones from legit-
imate users. Thus, Kill-Bots imposes fate sharing on clients that use
the same proxy. Similarly, it imposes fate sharing on clients that use a
single NATed IP address.

Second, the system has a few parameters which we have assigned val-
ues based on intuition and our experience with the operational envi-
ronment. For example, we example, we set the Bloom filter threshold
ξ = 32 because we want to allow the legitimate users to drop a num-
ber of puzzles because of congestion or indecisiveness without being
punished. There is nothing special about 32, but we need a value that
is neither too big nor too small. Similarly, we allow a clientthat an-
swers a CAPTCHA a maximum of 8 parallel connections because this
number seems to provide a good tradeoff between the improvedper-
formance gained from parallel connections and the desire tolimit the
resources that might be lost because of a compromised cookie. Other
system parameters are similarly chosen based on intuition or experi-
mentation.

Third, Kill-Bots assumes that the first data packet of the TCPconnec-
tion will contain theGET andCookie lines of the HTTP request. In
general the request may span multiple packets, but this happens rarely.
Further many application-level firewalls and HTTP proxies make a
similar assumption [59].

Fourth, eventually, the Bloom filter needs to be flushed sincecompro-
mised zombies may turn into legitimate clients. The Bloom filter can
be cleaned either by resetting all entries simultaneously or by decre-
menting the various entries at a particular rate. In the future, we will
examine which of these two strategies is more suitable.

We have experimented with a few attack strategies. In the future, we
would like to model and analyze the performance of Kill-Botsunder
any attack strategy. We will use the formalization to try to obtain
performance guarantees for Kill-Bots that are independentof attacker
strategy.

8. CONCLUSION
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The Internet literature contains a large body of important research on
denial of service solutions and countermeasures. The vast majority
of it assumes that the destination can distinguish between malicious
and legitimate traffic by performing simple checks on the content of
the packets, their headers, or their arrival rates. Yet, attackers are in-
creasingly disguising their traffic by mimicking legitimate users ac-
cess patterns, which allows them to defy traditional filters. This paper
focuses on protecting Web servers from DDoS attacks that masquer-
ade as Flash Crowds. Underlying our solution is the assumption that
most online services value human surfers much more than automated
accesses. We present a novel design which uses CAPTCHAs to distin-
guish the IP addresses of the attack machines from those of legitimate
clients. In contrast to prior work on CAPTCHAs, our system allows
legitimate users access to the attacked server even if they are unable or
unwilling to solve graphical tests. We have implemented ourdesign in
the Linux kernel and evaluated it in the Internet. We intend to make
our implementation publicly available under an open sourcelicense.
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