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ABSTRACT

Recent denial of service attacks are mounted by profedsiasing

Botnets of tens of thousands of compromised machines. doroivent

detection, attackers are increasingly moving away frorre fhand-

width floods to attacks that mimic the Web browsing behaviba o
large number of clients, and target expensive higher-lagsources
such as CPU, database and disk bandwidth. The resultirgksittae

hard to defend against using standard techniques as theionalire-

quests differ from the legitimate ones in intent but not intemt.

We present the design and implementation of Kill-Bots, akkexten-
sion to protect Web servers against DDoS attacks that mesdpi@s
flash crowds. Kill-Bots provides authentication using dniapl tests
but is different from other systems that use graphical teBisst, in-
stead of authenticating clients based on whether they slodvgraph-
ical test, Kill-Bots uses the test to quickly identify the #fldresses
of the attack machines. This allows it to block the maliciogiguests
while allowing access to legitimate users who are unablenarills
ing to solve graphical tests. Second, Kill-Bots sends azmadtchecks
the client’s answer without allowing unauthenticated rieaccess to
sockets, TCBs, worker processes, etc. This protects themtitation
mechanism from being DDoSed. Third, Kill-Bots combineshauti-
cation with admission control. As a result, it improves periance,
regardless of whether the server overload is caused by Dba$roe
Flash Crowd. This makes Kill-Bots the first system to addiesth

DDoS and Flash Crowds within a single framework. We have émpl

mented Kill-Bots in the Linux kernel and evaluated it in thiglerarea
Internet using PlanetLab.

1. INTRODUCTION

Denial of service attacks are increasingly mounted by psifmals
in exchange for money or material benefits [44]. Botnets olith
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higher layer server resources like sockets, disk bandwittitabase
bandwidth and worker processes [44, 18, 32]. We call such®ate
tacks CyberSlam, after the first FBI case involving DDoSHise [44].
The MyDoom worm [18], many DDoS extortion attacks [32], agd r
cent DDoS-for-hire attacks are all instances of CyberSkm32, 17].

Countering CyberSlam is a challenge because the requégitsating

from the zombies are indistinguishable from the requesteigded
by legitimate users. The malicious requests differ fromlégitimate

ones in intent but not in content. The malicious requestseafrom a

large number of geographically distributed machines; thag cannot
be filtered on the IP prefix. Also, many sites do not use pasisvor

login information, and even when they do, passwords coulddsdy

stolen off the hard disk of a compromised machine. Furtheeck-

ing the site specific password requires establishing a atiemeand

allowing unauthenticated clients to access socket byffe€8s, and
worker processes, making it easy to mount an attack on thewtita-

tion mechanism itself. Defending against CyberSlam usomgpmuta-

tional puzzles, which require the client to perform heavsnpatation

before accessing the site, is not effective because congppbwer is
usually abundant in a Botnet. Furthermore, in contrast taisédth

attacks [48, 36], it is difficult to detect big resource camsus when
the attack targets higher-layer bottlenecks such as CRbbase, and
disk because commodity operating systems do not supporfaired

resource monitoring [13, 12, 57]. Further, detecting bgprece con-
sumers becomes particularly hard if the attacker resortautating

attacks which cycle between different bottlenecks [34, 33]

This paper proposes Kill-Bots, a kernel extension thatqmtst Web
servers against CyberSlam attacks. It is targeted towanddl snd
medium online businesses, as well as non-commercial Weskh ill-
Bots combines two functionalities: authentication and adimn con-
trol.

sands of compromised machines are rented by the hour on IRC &a) Authentication: The authentication mechanism is activated during
used to DDoS online businesses to extort money or obtain @mmperiods of severe overload. It has two stages.

cial advantages [53, 35, 23]. The DDoS business is thrivimgeas-
ingly aggressive worms infect about 30,000 new machinesdpgr
which are used for DDoS and other attacks [51, 23]. Recemtiyas-

sachusetts businessman paid members of the computer tmaeig
to launch organized, crippling DDoS attacks against thféesocom-

petitors [44]. The attackers used Botnets of more than teasédnd
machines. When the simple SYN flood failed, they launched BhfH
flood; pulling large image files from the victim server in owéelming

numbers. At its peak the onslaught allegedly kept the victompany
offline for two weeks. In another instance, attackers ran asivea
numbers of queries through the victim’s search engine gigthe

server down [44].

To circumvent detection, attackers are increasingly npeainay from
pure bandwidth floods to stealthy DDoS attacks that masdeeaa
flash crowds. They profile the victim server and mimic legitenWeb
browsing behavior of a large number of clients. These astaatget

e In Stage:, Kill-Bots requires each new session to solve a re-
verse Turing test to obtain access to the server. Humans can
easily solve a reverse Turing test, but zombies cannot. We fo
cus on graphical tests, though Kill-Bots works with othgrety
of Turing tests. Legitimate clients either solve the graphi
test, or try to reload a few times and, if they still cannotessc
the server, decide to come back later. In contrast, the zsnbi
which want to congest the server continue sending new régjues
without solving the test. Kill-Bots uses this differencelia-
havior between legitimate users and zombies to identifyifhe
addresses that belong to zombies and drop their requests. Ki
Bots uses SYN cookies to prevent spoofing of IP addresses and
a Bloom filter to count how often an IP address failed to solve
a puzzle. It discards requests from a client if the numbetsof i
unsolved tests exceeds a given threshold (e.g., 32 unsphzd
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Figure 1: Kill-Bots Overview. Note that graphical puzzles are only seved
during Stages .

zles).

Kill-Bots switches toStages after the set of detected zombie
IP addresses stabilizes (i.e., filter does not learn any el
addresses). In this stage, puzzles are no longer serveadadhs
Kill-Bots relies solely on the Bloom filter to drop requestsrh
malicious clients. This allows legitimate users who canioot

don’t want to, solve graphical puzzles access to the semrer d

spite the ongoing attack.

(b) Admission Control: Kill-Bots combines authentication with ad-
mission control. A Web site that performs authenticatiorpttotect
itself from DDoS encounters a general problem: It has a itepaol
of resources, which it needs to divide between authentigatew ar-
rivals and servicing clients that are already authentétaléere is an
optimal balance between these two tasks. Spending a largaram
of resources on authentication might leave the server artablully
serve the authenticated clients, and hence, wastes seresgurces
on authenticating new clients that it cannot serve. On therdband,
spending too many resources on serving the clients redheesate
at which new clients are authenticated and admitted intosémeer,
which might result in idle periods with no clients in service

Kill-Bots computes the admission probability that maximizes the
server’s goodput (i.e., the optimal probability with whiobw clients
should be authenticated). It also provides a controller ahaws the

server to converge to the desired admission probabilitygusimple

measurements of server’s utilization. Admission contsal standard
mechanism for combating server overload [20, 24, 56, 19,587,

but Kill-Bots examines admission control in the context dadlitious

clients and connects it with client authentication.

Fig. 1 shows a block diagram of Kill-Bots. When a new conrwetcti
arrives, it is first checked against the list of detected Zematdresses.
If the IP address is not recognized as a zombie, Kill-Botsitzlthe
connection with probabilityx = f(load). In Stage:, admitted con-
nections are served a graphical puzzle. If the client sahepuzzle, it
is given a Kill-Bots HTTP cookie which allows its future cautions,
for a short period, to access the server without being subjead-
mission control and without having to solve new puzzlesSinges,
Kill-Bots no longer issues puzzles; admitted connectiaesimmedi-
ately given a Kill-Bots HTTP cookie.

Kill-Bots has a few important characteristics.

o Kill-Bots addresses graphical tests? bias against users wh
are unable or unwilling to solve them.Prior work that employs
graphical tests ignores the resulting user inconvenieacgedl
as their bias against blind and inexperienced humans [41,
Kill-Bots is the first system to employ graphical tests tanitily
humans from automated zombies, while limiting their nagati

socket buffers. Typically sending the client a puzzle requires
establishing a connection and allowing unauthenticatihtsl

to access socket buffers, TCB’s, and worker processes, mak-
ing it easy to DoS the authentication mechanism itself. ligea

a DDoS protection mechanism should minimize the resources
consumed by unauthenticated clients. Kill-Bots introduee
modification to the server’s TCP stack that can send a 1-2gback
puzzle at the end of the TCP handshake without maintaining
any connection state, and while preserving the semantit€ Bf
congestion control.

Kill-Bots improves performance, regardless of whethewveer
overload is caused by DDoS attacks or true Flash Crowds, mak-
ing it thefirst system to address both DDoS and Flash Crowds
within a single framework. This is an important side effect of
using admission control, which allows the server to admit ne
connections only if it can serve them.

The paper presentsgeneral model of resource consumption

in a server that implements an authentication procedutesimt
terrupt handler, a standard location for packet filters agrehéd
firewalls [38, 47]. We use the model to devise an admission con
trol scheme that maximizes the server's goodput by findieg th
optimal probability with which new clients should be auttien
cated. Our model is fairly general and is independent of hmw t
authentication is performed; the server may be autheimigat
the clients by checking their login information, verifyirlyeir
passwords, or asking them to solve a puzzle.

In addition, Kill-Bots requires no modifications to clierdfs
ware, is transparent to Web caches, and is robust to attacks i
which the human attacker solves a few graphical tests and dis
tributes the answer to a large number of zombies.

We implement Kill-Bots in the Linux kernel and evaluate it time
wide-area network using PlanetLab. Additionally, we castcan ex-
periment on human users to quantify user willingness toesghaph-
ical puzzles to access a Web server. On a standard 2GHz Peliviu
Linux machine with 1GB of memory and 512kB L2 cache running
a mathopd [14] server on top of a modified Linux 2.4.10, KittB
serves graphical tests in 34, blocks malicious clients using the Bloom
filter in less than Ls, and can survive DDoS attacks of up to 6000
HTTP requests per second without affecting response ttm@em-
pared to a server that does not use Kill-Bots, our systeniasattack
rates 2 orders of magnitude higher, while maintaining raspdimes
around their values with no attack. Furthermore, in our liri@sowds
experiments, Kill-Bots delivers almost twice as much gaddgs the
baseline server and improves response times by 2 ordersgofitude.

2. THE DESIGN OF KILL-BOTS

Kill-Bots is a kernel extension to Web servers. It combinethanti-
cation with admission control.

2.1 Threat Model

Kill-Bots aims to improve server performance under CybenSit-
tacks, which mimic legitimate Web browsing behavior andstone
higher layer server resources such as CPU, memory, datapase
disk bandwidth. Prior work proposes various filters for baiuth
8pods [36, 11, 22, 28]; Kill-Bots does not address theseckstaAt-
tacks on the server's DNS entry or on the routing entries &vemt

1

These results are for the traditional event driven systextrelies on

impact on legitimate users who cannot or do not want to solgterrupts. The per-packet cost of taking an interrupt igyfdarge

them.
¢ Kill-Bots sends a puzzle without giving access to TCBs or

~ 10us [30]. We expect an even better performance with polling
drivers [39].
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Figure 2: A Kill-Bots server transitions between NORMAL and SUS- SYNACKACK
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Figure 3: AKill-Bots server sends a test to a new client without allocting
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humans to continuously solve reverse Turing tests.

2.2 Authentication

During periods of severe overload, Kill-Bots authenticelients be-
fore granting them service. The authentication has twoestagirst,
Kill-Bots authenticates clients using graphical teststamsvn in Fig. 4.
The objective of this stage is to improve the service expegd by hu-
man users who solve the graphical tests, and to learn thedfesgbs
of the automated attack machines. The first stage lastsKititBots
concludes it has learned the IP addresses of all the zomhbigisip
pating in the attack. In the second stage, Kill-Bots no lorigsues
graphical tests; instead clients are authenticated bykafgthat their
IP addresses do not match any of the zombie IP addressesithat K
Bots has learned in the first stage. Below, we explain thesautittation
mechanism in detail.

02 B o= E=ry

Figure 4: Screenshot of a graphical puzzle.

<html>
<form method = “GET” action="/validate”>
<img src="PUZZLE.gif">
<input type="password” name="ANSWER">
<input type="hidden” name="PUZZLE_ID" value="[]">
</form>

</html>

Figure 5: HTML source for the puzzle

2.2.1  Activating the Authentication Mechanism is the need to timeout very long connections that startdusNORMAL
A Kill-Bots Web-server is in either of two modedfNORMAL or mode. Long connections that started in a pBRISPECTED_ATTACK
SUSPECTED_ATTACK, as shown in Fig. 2. When the Web servemode need not be timed out because their users have alreanyabe
perceives resource depletion beyond an acceptable kmitt shifts thenticated.

to the SUSPECTED_ATTACK mode. In this mode, every new con-

nection has to solve a graphical test before allocation ¢f state . L
on the server takes place. When the user correctly solvesette 2.2.2 Stage 1: CAPTCHA-Based Authentication

the server grants the client access to the server for thetioliraf  After switching to theSUSPECTED_ATTACK mode, the server enters
an HTTP session. Connections that begin before the senitth®l  S¢qge;, in which it authenticates clients using graphical tests, i

to the SUSPECTED_ATTACK mode continue to be served normallycAPTCHAS.
until they terminate or timeout. However, the server withé out

these connections if they last beyond a certain intervat {imiple-  (a) Modifications to Server's TCP Stack: Upon the arrival of a new
mentation uses 5 minutes). The server continues to operaitei HTTP request, Kill-Bots sends a graphical test and valiittte cor-
SUSPECTED_ATTACK mode until the load goes down to its normakesponding answer sent by the client without allocating F6Bs,
range and crosses a particular thresheld< 1. The load is es- socket buffers, or worker processes at the server. We achigy by
timated using an exponential weighted average. The valfies; 0 3 minor modification to the server TCP stack. As shown in Ridiir
andr2 will vary depending on the normal server load. For example, i Kill-Bots server responds to a SYN packet with a SYN cooFiee
the server is provisioned to work with 40% utilization, theme may client receives the SYN cookie, increases its congestioTdeyis to
choosex: = 70% andkz = 50%. two packets, transmits a SYNACKACHand the first data packet that
usually contains the HTTP request. The server's kernel doesre-
Several points are worth noting. First, the server behasionchanged zte a new socket upon completion of the TCP handshake. th#tea

in theNORVAL mode, and thus the system has no overhead in the COBYNACKACK packet is discarded because the first data packet f
mon case of no attack. Second, the cost for switching bacKattd

between the two modes is minimal. The only potential switgliost 2Just a plain ACK that finishes the handshake.




Puzzle ID (P) ‘ Random (R) l Creation Time (C) l Hash (P, R, C, secret)
32 96 32 32

Figure 6: Kill-Bots Token

the client repeats the same acknowledgment sequence nasliee
SYNACKACK. When the server receives the client's data pacie
first checks whether is a puzzle answelf. the packet does not con-
tain an answer, the server replies with a new graphicaleéegbedded
in an HTML form (Fig. 5), and immediately closes the connattby

themselves for these 8 connections. Most legitimate welvses
open no more than 8 simultaneous connections to a singlerd@s].

2.2.3 Stage 2: Authenticating Users Who Do Not Answer
CAPTCHAs
An authentication mechanism that relies solely on CAPTCHiAs

two disadvantages. First, the attacker can force the sevamtinu-
ously send graphical tests, imposing an unnecessary aeidrethe

sending a FIN packet. Our implementation uses CAPTCHA immagserver. Second, and more important, humans who are unalpie-or

that fit in 1-2 packets. The server kernel does not wait folRifNeack.
On the other hand, if the packet is an answer, the kernel shiggk
cryptographic validity of the ANSWER (see (c) below). If thlkeeck
succeeds, a socket is established and the request is ddlit@the
application. Note that the above scheme preserves TCP stimge
control semantics, does not require any modifications &ntlsoft-
ware, and prevents attacks that hog TCBs and sockets byliskiag
connections that exchange no data. When a human answersfie g
ical test, the HTML form (Fig. 5) generates an HTTP requesT
/val i dat e?answer =

ANSVER; that reports the answer to the server.

willing to solve CAPTCHAS may be denied service.

To deal with this issue, Kill-Bots distinguishes legitiraatsers from
zombies by their reaction to the graphical test rather thair aibility
to solve it. Once the zombies are identified, they are blofi@d us-
ing the server. When presented with a graphical test, tegte users
may react as follows: (1) they solve the test, immediatelgfter a
few reloads; (2) they do not solve the test and give up on aotgs
the server for some period, which might happen immediatiééyr ee-
ceiving the test or after a few attempts to reload. The zoshave
two options; (1) either imitate human users who cannot sthlegest
and leave the system after a few trials, in which case thelattas

(b) One Test Per Sessionlt would be inconvenient if legitimate usersbeen subverted, or (2) keep sending requests though theptcsoive
had to solve a puzzle for every new HTTP request or every nel® T@he test. However, by continuing to send requests withoutrepthe

connection. The Kill-Bots server gives an HTTP cookie toerwghen
he solves the test correctly. This cookie allows the useetenter
the system for a specific period of time. (In our implemenotatithis
period is set to half an hour). If a new HTTP request is accaorgob
by a cryptographically valid HTTP cookie, the Kill-Bots ser creates
a socket and hands the request to the application withouihgest new
graphical test.

test, the zombies become distinguishable from legitimatrs) both
human and machine.

In Stage, Kill-Bots tracks how often a particular IP address hasfail
to solve a puzzle. It maintains a Bloom filter whose entries &
bit counters® Whenever a client is given a graphical puzzle, its IP
address is hashed and the corresponding entries in the Bilbenare
incremented. In contrast, whenever a client comes backantbrrect

(c) Cryptographic Support: When the Kill-Bots server issues a puz-answer, the corresponding entries in the Bloom filter areateented.

zle, it generates a Kill-Bots Token as shown in Fig. 6. Thetokon-
sists of a 32-bit puzzle 1DP, a 96-bit random numbeR, the 32-bit

Once all the counters corresponding to an IP address reaatieupar
threshold (in our implementatich= 32), the server drops all packets

creation timeC of the token, and a 32-bit collision-resistant hash dofrom that IP address and gives no further tests to that client

P, R, andC along with the server secret. The token is embedded
the same HTML form as the puzzle (Fig. 6) and sent to the client

When a user solves the puzzle, the browser reports the angules

server along with the Kill-Bots token. The server first vesfthe token
by recomputing the hash. Second, the server checks th&Ki#-to-

ken to ensure the token was created no longer than 4min ago. tNe
server checks if the answer to the puzzle is correct. If tobseks are
successful, the server creates a Kill-Bots cookie and giveshe user.
The Kill-Bots cookie is created from the token by updating tbken
creation time and recording the token in the table of valid-Bots

cookies. Subsequently, when a user issues a new TCP camedth

an existing Kill-Bots HTTP cookie, the server validates toekie by
recomputing the hash and ensuring that the cookie has nivedxpe.

no more than 30min have passed since cookie creation. Th8#ib

server also keeps track of the number of simultaneous HT{Rests
that belong to each cookie.

(d) Protecting Against Copy Attacks: What if the attacker solves a
single graphical test and distributes the HTTP cookie tagelaum-
ber of bots? Kill-Bots introduces a notion of per-cookierfiaiss to
address this issue. Each correctly answered graphicahltests the
client to execute a maximum of 8 simultaneous HTTP requé3its.
tributing the cookie to multiple zombies makes them compabteng

3A puzzle answer has an HTTP request of the fo@ET
/ val i dat e?answer =ANSVEER;, wherei is the puzzle ID.

in

When the attack starts, the Bloom filter has no impact andsueer
authenticated using the graphical puzzles. Yet, as the msmeceive
more puzzles and do not answer them, their counters pile npe @
client has¢ unanswered puzzles, it will be blocked. As more zombies
get blocked, the server’s load will decrease and approachoitmal
level. Once this happens the server does not need to useaipbiaical
tests any more. The server no longer issues puzzles; ingtesibs
solely on the Bloom filter to block requests from the zombierdk.
We call this mode of operatiofitage2. Sometimes the attack rate is so
high that even though the Bloom filter catches all the attaatkets,
the overhead of receiving the packets by the device driveornes
noticeable. If the server notices that both the load is stabd the
Bloom filter is not catching any new zombie IP addresses, then
server concludes that the Bloom filter has caught all attBaddresses
and switches off issuing puzzles, i.e., the server switth&sageo. If
subsequently the load increases, then the server resueisstling of
puzzles.

In our experiments, the Bloom filter takes only a few minutesle-
tect and block all offending clients. In general, the higtier attack
rate, the faster the Bloom filter will detect the zombies alogkbtheir
requests. A full description of the Bloom filter is §m.

2.3 Resource Allocation & Admission Control

“Please refer to [15] for a general description of the Blooterfil
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A Web site that performs authentication to protect itsedhirDDoS 0 5000 10000 15000 20000 25000
attacks is faced by a general problem. It has a certain pooé-of Attacker Requests/sec

sources, which it needs to divide between authenticatiegctients

and servicing the ones already authenticated. There istimalbal- Figure 7: Comparison of the goodput of a base/unmodified server with
ance between these two functionalities. Spending a larggianof a Kill-Bots server. Server has a legitimate load of 50%. (TOP Kill-Bots
resources on the authentication might leave the servedeitalfully  without admission control. (BOTTOM) Kill-Bots with admiss ion control.
service the authenticated clients. Hence, the server siass®urces The graphs show that Kill-Bots improves server goodput, is een better
on authenticating new clients that it cannot serve. On therdband, with admission control, particularly at high attack rates.

spending too many resources on serving authenticated<lieduces

the rate at which new clients are authenticated and adniittedhe In comparison, a server that does not use authenticatiogduaiput:
server, which might result in idle periods with no clientsarvice.

. . . . pg:min< 57L>' ©)]
In this section, we model a Web server that implements areatith qpn” As + qha
cation procedure in the interrupt handler. This is a stahttazation
for packet filters and kernel firewalls [47, 38, 4]. It allowsodping
unwanted packets as early as possible. We use the modelise gev
admission control scheme that maximizes the server’s gadnypfind-
ing the optimal probability with which new clients should &gthenti-
cated. Our model is fairly general and independent of hovattieen-
tication is performed. The server may be authenticatinglieeits by
checking their login information, verifying their passwlsr or asking
them to solve a puzzle. Furthermore, we do not make any aggump a_ o As 0.1— Ao + As
on the distribution or independence of the interarrivalesnof legit- pg = T Smax g Ly ’

imate sessions, or of attacker requests or of service tirfiable 1 For attack rates\ th dout of th ith dmissi

shows the variables used in the analysis. orattack ratéSia > 4, the goocput of the SErver with no admission
goes to zero, whereas the goodput of the server that usessdmi
control decreases more gracefully.

But authentication is effective in combating DDoS only wiaerthen-
tication consumes less resources than servicepui,e»> . Hence,

B >> 1, and the server with authentication can survive attacksrate
that are up taB times larger without any loss in goodput.

Also, comparep; with the goodput of a server which implements au-
thentication without admission control (i.e.,= 1) given by:

(4)

2.3.1 Results of the Analysis
Fig. 7 illustrates the above results; A Pentium-IV, 2.0GKEBIRAM,

machine can serve 1-2 pkt puzzles at a peak rate of 6000Q/see- (
6000). Assume, conservatively, that each HTTP request fetcliiés a
of size 15KB{s;, = 1000), that a user makes abo2d requests in a
sessionf{ = 1/20) and the normal server load is about 50%. Fig. 7
qualitatively compares the goodput of a server which do¢sis® ad-
mission control (a base server) with the goodput of a KiltBgerver
o” = min (L, 1) and B = @, (1) for both the case ot = 1 anda™. These are computed using equa-
(B +@)As +qAa Hn tions 2, 4, and 3 respectively, for the above parameter saltithe

where\, is the attack request ratd, is the legitimate users’ sessiontOP graph in Fig 7 shows that authentication improves s&rgerod-

rate, L is the average time taken to serve a puzzle,is the aver- PUt- The bottom graph shows the additional improvementegairom
Hp Hh adapting the admission probability

This section summarizes the results of our analysis andistss their
implications. The detailed derivations are§i@.3.2.

The admission probability that maximizes the server's goodthe
time spent on serving HTTP requests) is:

age time to serve an HTTP request, afp(ds the average number of
requests in a session. When a request from an unauthedtidatat .
arrives, the server should drop it with probability- *, and attempt 2-3-2 Analysis

to authenticate it with probability™. This yields an optimal server () Server with no authentication (base server):Let us first ana-
goodput, which is given by: lyze the performance of an attacked Web server that doesseady
\ > authentication mechanism. Fig. 8 shows a model of such sefbhe

s s (2) Serverserves HTTP requests with an averageugatéttacking HTTP
apn” (1+ 4)As + g3

X .
Pg = min . L .
i requests arrive at a rate,. Legitimate users/sessions, on the other
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Figure 8: Model of a server that does not use authentication.
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Figure 9: A server that implements some authentication meca-
nism.

hand, arrive at an average rate, where a given session consists of
some random number of HTTP requests. When their HTTP redgiest

served, legitimate users either leave the web site withahitiby ¢ or
send another HTTP request with probability- ¢, (potentially after
some thinking time). At the input to the queue in Fig. 8, therage
rate of legitimate HTTP requests, denotkd equals the sum ok,
plus the rate from the feedback loop of subsequent requelsése the

latter is1 — ¢ times the departure rate from the server of legitimate

HTTP requests, denoteq;:
Al = As + (1 — q)/\d (5)

Given that the server occupancy is less than one, i.e. ghanthe
offered load can be handled by the server (though possitttysignif-
icant delay), them\; = )\; and solving equation 5 fox; yields:

o=
q

One can viewl /¢ as the mean number of requests per session.

(6)

We make some simplifying assumptions. First, the systemgfg-is
in steady state, i.e. for practical purposes we assume tiraednter-
val where the parameters are essentially constant existsong, we
assume that the server will process requests if any arerp(esek-
conserving). However, we do NOT make any assumptions onishe
tribution or independence of the interarrival times of {egate ses-
sions, or of attacker requests or of service times. Undesetieendi-

tions, the occupancy of the servgrj.e. the fraction of time the server

is busy, will be the offered load, whenever this load is lassitl. Oth-
erwise,p will be capped at 1. The offered load is the arrival rate
requests\, + \; times the mean service timﬁé’L, thus

p = min <i(/\a+%)71) . (7)

The goodput of the server is the fraction of the occupancytdyszo-

cessing legitimate requests:

b )\S/q _
Po = NoJa + xt

Ae
X+ e’

8)

When there are no attackers, the server’s goodput is sirtglycicu-

put decreases proportionally to the attack rate. Moredweffered
loads greater than one, the goodput could degrade furtipendéng
on how the real system handles congestion.

(b) Server provides authentication:Next, we present a general model
of the performance of a server that implements some autadioin
mechanism. Fig. 9 illustrates the model. The server diviteBme
between authenticating new clients and serving the onea@jrau-
thenticated. A new client is admitted to the authenticapibase with

a probabilitya that depends on the occupancy of the server, i.e., how
busy the server is. Authentication co%if-g cpu time. (When applied

to Kill-Bots, ﬁ is the average time to send a graphical test). Other
parameters are same as before. The server spends a fractiome 0
pp, ON authenticating clients, and a fraction of tirpg, serving HTTP
requests from authenticated clients. Since the servees@tV TP re-

quests only from authenticated clients, the goodpgiequalsp, .

Using the same general assumptions as for Fig. 8, we wishtér-de
mine the value of the admit probability,”, that maximizes the good-
put, pp, given the physical constraint that the server can not bg bus
more than 100% of the time. That is:

Q1A Ph )
suchthatp, + pn < 1, (20)
. . Aa + As
and given constraint 11, = « : (12)
P
As
q fh

Since the goodpup,, is increasing iny, (Eq. 12), we would want to
makea as big as possible, subject to the constraint (10). Conider
the simple case wherg, + pn is strictly less than 1 even when all
clients are admitted to the authentication step, i = 1. Then the
optimal choice fora, denoteda™, is 1, and the maximal goodpyt,

is 2= For the more interesting case, now suppose that the coistra
(10) would be binding at some value®fess than or equal to one. The
value of« at which the constraint first becomes binding is the largest
feasible value fory, and thus is the value that maximizes the goodput.
Substituting Eq. 11 and 12 infg, + p,, = 1 and solving forx yields

the maximizing value. Summarizing the two cases, the optusiae

for the admission probability is:

* . qip _ Hp
d a” = min <—(B+q))\s+q)\a71) and B o (13)
Substitutinga™ into (12) yields the maximal goodput:
BA A
of S <(B TN+ X’ quh) =

Note that since the authentication is performed in the ingthandler,
it preempts serving HTTP requests. The expressions forpacmy
Eqg. 11 and 12 can incorporate the constraint Eq. 10 as:

Pp = min(ozm7 1), (15)
Hop
= min(ozL 1—pp) (16)
Ph q [n ) Pp)-

Settinga to 1in Eq. 15 and 16 yields the goodppf, = p», obtained
when the web server tries to authenticate all new clientarcbgss of

pancy, which |sq*ﬂ—} However for large attack rates, the server’s goodhe offered load.



solid line segments A-B—C. Ideally, one would like to operate the
] o AU system at point B which maximizes the system’s goodpyt= p»,
/ Pn = [m@p]pp and corresponds @ = «*. However, it is difficult to operate at point
& ~JB L ta T B because the system cannot tell whether it is at B or not;afitp
on the segment B-C exhibjit; = 0. Itis easier to stabilize the system
g E at point E where the system is slightly underutilized beeasimall
'E deviations from E exhibit a change in the valuepef which we can
= measure. We pick E such that the fraction of idle time at B is é
S Thus, every T=10s, we adapt the admission probability aliegrto
3 x the following rules:
Zero Idle
Under-utilized” | / Cycles 710‘/;25’ pizf
(=0) (=) Aa=1 yalt 0<p < (19)
A Serving Puzzles p, c —sa. pi=0

where~i, 2, and~s are constant parameters, which Kill-Bots set to

Figure 10: Phase plot showing how Kill-Bots adapts the admission prob- %, %, and% respectively. The above rules allow us to mevpropor-

ability to operate at a high goodput tionally to how far we are from the chosen equilibrium poinuBless
) o the system has no idle cycles in which case we decrease ttisshoim
2.4 Adaptive Admission Control probability aggressively to go back to the stable regimeiadopoint

How to run the server at the optimal admission probabilitg?c®dm- E.

putea™ from Eq. 1 requires values for parameters that are typically

unknown at the server and change over time, such as the attack 3. SECURITY ANALYSIS

Aq, and the legitimate session rate, We devise an adaptive schem . . . . , - .

that gradually changes the admission probabilityased on measure-eln this section, we d|§cuss Kill-Bots’s ability to handle ariety of
ments of the server’s idle cycles. The model of Fig. 9 assuhee€PU attacks from a determined adversary.
has only two tasks: authentication and serving requestsveler, in
practice where there are other tasks it is important thaataptive
control leave some idle cycles and not attempt for 100% ceaocy
Let p; denote the fraction of time the server is idle. And still ddes-
ing only the task of serving puzzles and requests, we have:

(a) Socially-engineered attack:In a socially-engineered attack, the
adversary tricks a large number of humans to solve grapipicz
zles on her behalf. Recently, spammers employed this tackgpass
graphical tests used by Yahoo and Hotmail to prevent autxinete-
ation of email accounts [7]. The spammers opened and asedrt
ph+pp+pi = 1. (17) Web site containing pornography. Visitors to the porn siezenasked
to enter the word contained in a CAPTCHA graphic before theyew
granted access. The porn site downloaded its CAPTCHASs frahody
or Hotmail email creation Web page, presented them to the pite
visitors, and used the answers to create new email accounts.

If the current admission probability > «*, the server spends more
resources than necessary authenticating new clientstie¢g users
already in the system starve, and the server runs out ofydles. On
the other hand, ifv < o™, the server issues fewer puzzles than necey,

: - . . e argue that Kill-Bots is much more resilient against docian-
sary, admits fewer legitimate users and goes idle. Thubgeifserver . "
; S . ; ~ """ gineered attacks than the CAPTCHA system used by emailioneat
is experiencing idle times above some threshold, it shadcease its

L : . sites. In contrast to email account creation where the takegiven an
value ofca, otherwise it should decrease it. To determine how much the . - - .

. . o ample amount of time to fill in the registration form and sdive puz-
server should increase/decreaseve note that givemx < o™, there

- . o ! zle, puzzles in Kill-Bots expire 4 minutes after they haverbserved.
will be some idle cycles and by substituting Eq. 11 and 12 inq Thug the attacker cannotpaccumulate a sufficien)t/ amoumswers

Aa + N Al from human users to mount an attack with a rate high enough for
<Tp m) =1=pi Denial-of-Service. The attacker needs a continuous stofarisitors
to his porn site. Indeed, a stream of visitors to the pornisiéeneces-
Hence, sary but not sufficient condition. The attacker needs torobatporn
al 11— pi (18) server at least as popular as the victim Web server. Rebali Kill-
a2 1-p2 Bots employs a loose form of fairness among authenticatedts] it
allows each of them a maximum of 8 parallel connections. Beeaf
this relatively fair treatment of authenticated clients attacker needs
to maintain the number of authenticated malicious clieatgdr than
that of legitimate users, so that she can grab most of thessmne-
sources. Such a popular porn site is an asset. It is unlikelythe
attacker will be willing to jeopardize her popular porn site other
popular servers) to DDoS an equally or less popular Web $ite-
thermore, one should keep in mind that security is a movirgetaby
forcing the attacker to resort to socially engineered &tawe made
the attack harder and the probability of being arresteddrigh

Vo < o :

1 2
Vo ,a” < a”:

Thus, we can increase proportionally to the non-idle cycles (i.e. the
occupancy).

We use Fig. 10 to argue the rationale underlying the desigouof
adaptive admission controller. The figure showsrgiation between
the fraction of time spent on authenticating clieptsand that spent
serving HTTP requests,. The line labeled “Zero Idle Cycles” refers
to the states in which the system is highly congegtee: 0 — p, +
prn = 1. The line labeled “Underutilized” refers to the case in vihic
the system has some idle cycles, in which case, taking the o&t

Eq. 11 and 12 leads tp, = (kﬁﬁa :Ti) pp- As the fraction of (p) polluting the Bloom filter: The attacker may try to spoof the IP
time the system is idl@; changes, the system state moves along tteldress and pollute the entries in the Bloom filter, causiiligB6ts




to mistake legitimate users as a malicious. This attack fienis not
possible because the Bloom filter entries are incrementezhvite
client is sent a puzzle, and decremented when Kill-Botsivesean
answer from the client. Both events require a SYN cookie kHiest.

(c) Copy attacks: In a copy attack, the adversary solves one graph-

ical puzzle, obtains the corresponding HTTP cookie, anttidiges

it to many zombie machines to give them access to the Web Kite.

might seem that the best solution to this problem is to ineladecure
one-way hash of the IP address of the client in the cookie.oktunf
nately, this approach does not deal well with proxies or mealsers.
Kill-Bots protects against copy attacks by limiting the riuem of in-
progress requests per puzzle answer (our implementatisthéelimit
to 8).

(d) Replay attack: A session cookie includes a secure hash of the

time it was issued, is only valid during a certain time ins&nand
only covers up to eight simultaneous accesses. If an adyersss to
replay a session cookie outside its time interval it getsated. An at-
tacker may solve one puzzle and attempt to replay the “arigpaeket
to obtain many more Kill-Bots cookies. Recall that Kill-Bassues
a cookie for a valid answer only if it is accompanied with aid/dlo-

ken (Fig 6). Further, the cookie is an updated version of tker.

Hence, replaying the “answer” packet yields the same cookie

(e) Collecting a database of all graphical puzzles and theian-

User Space
Web Server
NET
Puzzle Manager ﬁ
S
Memory i/L " |
- - erne
Bloom Filter || Puzzle Table || Cookie Table | Network
Stack
<::>[ Request Filter ]
Kernel

Figure 11: A Modular representation of the Kill-Bots code.

Kill-Bots is implemented as a kernel update with key compuasé-
lustrated in Fig. 11. We provide a high level descriptionhefde com-
ponents and omit the details for lack of space.

(a) The Puzzle Managerconsists of two components. First, a user-
space stub that asynchronously generates new puzzles tifiesrtbe
kernel-space portion of the Puzzle Manager of their locatioGen-
eration of the graphical puzzles is relatively easy [2], aad either
be done on the web server itself in periods of inactivity (ght) or

swers: The adversary might try to collect all possible puzzles dred t O & different machine dedicated for this purpose. Also feszmay

corresponding answers. When a zombie receives a puzzégritles
its database, find the corresponding answer, and send ittbattie
server. To protect from this attack, Kill-Bots assumes ttesence of
a large number of puzzles, that are periodically replacet winew
set. Generation of the graphical puzzles is relatively ¢85y, and
can either be done on the web server itself in periods of ivigc{at
night) or on a different machine dedicated for this purp@sso puz-
zles may be purchased from a trusted third party. Since teespf all
possible graphical puzzles is huge, building a databadeesétpuzzles
and their answers is a daunting task. Making this databaskable to
the zombies, and ensuring they can search it and obtain essithin
the 4 minute lifetime window of a puzzle is very difficult.

(f) DoS attack on the authentication mechanismKill-Bots is highly
robust against DDoS attacks on the authentication code. t&teds
earlier, Kill-Bots does not allow unauthenticated cliefit@access any
connection state such as TCBs or sockets. The computatosabf
authenticating a client is dominated by the cost of intelsuferving
a puzzle incurs a total computational overhead of ealy0us.

(g) Concerns regarding in-kernel HTTP header processingKill-
Bots does not parse HTTP headers; it pattern matches thmargto
the GET and theCooki e: fields against the fixed stringalidateand
against a 192-bit Kill-Bots cookie respectively. The patteatching
is done in-place, i.e. without copying the data and is inaegpe; less
than8us (§ 5.1.2) per request.

(h) Breaking the CAPTCHA: Prior work on automatically solving
simple CAPTCHAs exists [42], but such programs are not wideail-
able to the public for security reasons [42]. However, WhARPTCHAs
can be broken, Kill-Bots can switch to another kind as lonthag fit
in a few packets.

4. KILL-BOTS SYSTEM ARCHITECTURE

be purchased from a trusted third party. The second compdmen
kernel-thread that periodically loads new puzzles fronk digo the
Puzzle Table in memory that the Request Filter then digiibto new
sessions.

(b) The Request Filter (RF) processes every incoming TCP packet
addressed to port 80. It is implemented in the bottom halfiefinter-
rupt handler to ensure that unwanted packets are droppeatigsas
possible.

Fig. 12 provides a flowchart representation of the RF code eé
TCP packet arrives for port 80, the RF first checks whetheelitrigs
to an established connection in which case the packet is diatedy
queued in the socket’s receive buffer and left to standardekeoro-
cessing. Otherwise the filter checks whether the packessianew
connection (i.e., is it a SYN?), in which case, the RF repligth a
SYNACK that contains a standard SYN cookie. If the packetoisan
SYN, we examine whether it contains any data; if not, the pack
dropped without further processing. Next, the RF perfowsinex-
pensive tests in an attempt to drop unwanted packets qyickigshes
the packet’s source IP address and checks whether the pandiag
entries in the Bloom filter have all exceedédinsolved puzzles, in
which case the packet is dropped. Otherwise, the packettgomsgh
admission control and is dropped with probability- «. If the packet
passes all of the above checks, we need to look for 4 diffqressi-
bilities: (1) this might be the first data packet from an uhauticated
client, and thus we should send it a puzzle and terminateotiesxtion
immediately; (2) this might be a packet from a client whick blaeady
received a puzzle and is coming back with an answer. In this,ase
need to verify the answer and assign the client an HTTP couakiih
allows it access to the server for a prolonged period of tifBeOr it
is an authenticated client which has a Kill-Bots HTTP cocdiel is
coming back to retrieve more objects; (4) If none of the akisveue
then the packet should be dropped. These checks are ordemeda
ing to their increasing cost to allow the system to shed aweacla
clients with as little cost as possible.
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Figure 12: The path traversed by new sessions in Kill-Bots. This code is
performed by the Request Filter module.
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Figure 13: Our experimental setup.

Function CPU Latency
Bloom Filter Access T us
Processing HTTP Header 8 us
SYN Cookie Check 11 pus
Serving puzzle 3lus

Table 2: Kill-Bots Microbenchmarks

(a) Web Server: The web server is a standard 2GHz Pentium IV Linux
machine with 1GB of memory and 512kB L2 cache running an unmod
ified mathopd [14] server on top of a modified Linux 2.4.10 ke

In our implementation of Kill-Bots, we modified about 300ds of
kernel code, mostly in the TCP/IP protocol stack. The punaémn-
ager, the bloom filter and the adaptive controller are imgletad in

an additional 500 lines. To obtain realistic server workloae repli-
cate both static and dynamic content served by two web;sitedab’s
Web server and a Debian mirror server.

(b) Modeling Request Arrivals: Legitimate clients generate requests
by replaying HTTP traces collected at our Lab’s Web servdrabe-
bian mirror server. Multiple segments of the same long teaeglayed
simultaneously to control the load generated by legitinciignts. An
attacker issues requests at a desired rate by randomlyngieklURI
(static/dynamic) from a list of content available on theveer The re-
sults presented herein are for the case when zombie requeatsaare
CBR (constant bit rate). Attack requests with Poisson alsiexhibit
qualitatively similar results.

(c) The Puzzle Tablemaintains the puzzles available to be served ) ) ) )
to users. We implement a simple mechanism to avoid racesebetw (C) Experiment Setup: We evaluate Kill-Bots in the wide-area net-
writes and reads to the puzzle table by dividing the PuzziseTmto WOrK using the setup in Fig. 13. The Web server is connectel to

two memory regions, a write window and a read window. The R&00Mbps local Ethernet. We launch CyberSlam attacks frofndi

quest Filter fetches puzzles from the read window, whileRiazle

ferent nodes on PlanetLab using different port ranges talsite mul-

Manager loads new puzzles into the write window. Once theleuz tiPle attackers per node. Each PlanetLab node simulates @58

Manager completes loading all puzzles, the read and writelovis
are swapped atomically.

zombies, which results in a total of 25,600 attack clientg. atulate
legitimate clients on multiple machines connected to ocalloetwork
to ensure that any difference in their performance is dubdcservice

(d) The Cookie Tablemaintains the number of connections that are if{1eY receive from the Web server, rather than wide-area\aathbil-

progress for each Kill-Bots cookie. When this number readeno
further connections are allowed for that cookie.

(e) The Bloom Filter counts unanswered puzzles for each IP addre
allowing the Request Filter to block requests from IPs witirethant
unsolved puzzles. (Our implementation sets 32). Usually, Bloom
filters are characterized by two parameters; the number toesriv
in the array and the number of hash functignghat map keys onto
elements of the array. Our implementation udes= 22° andk = 2.
Since a potentially large set of keys, in our case 32 bit |Rresiubs,
are mapped onto much smaller storage, Bloom filters are &men
lossy. This means that there is a non-zero probability that@unters
corresponding to a legitimate user pile upStdue to collisions with

ity.

(d) Emulating Clients: We use WebStone2.5 [3] to emulate both le-

Qitimate Web clients and attackers. WebStone is a benctingatéol

that issues HTTP requests to a web-server given a specifiibdiion
over the requests, and reports statistics. We extended tafebd B two
ways. First, we added support for HTTP sessions, cookies,f@n
replaying requests from traces. Second, we need the clienssue
requests at specific rates independent of how the web-sesgonds
to the load. For this, we rewrote WebStone's networking casiag
libasync [37], an asynchronous socket library. We incréaise kernel
limit on file descriptors per processll i ni t to 40960 on each of our
local machines, to emulate large numbers of legitimatesussing few

attackers (false positives). Assumingdistinct attacker zombies and machines. Since, PlanetLab nodes have a figidi mi t of 4096, we

uniformly random hash functions, the probability a legaie client
is classified as an attacker is approximat@ly- e **/V)* ~ (k2 )k,
Given our chosen values foF andk, this probability for 75,000 attack
machines i$.023.

5. EVALUATION

We have a Linux-based kernel implementation of Kill-Botgjeh we
evaluate in the wide-area network using PlanetLab.

5.1 Experimental Environment

scaled the number of zombies by using many more nodes.

5.1.1 Metrics

We evaluate Kill-Bots by comparing the performance of a ls&sger
(i.e., a server with no authentication) with its Kill-Botsmor operat-
ing under the same conditions. Server performance is me@dsising
these metrics:

(a) Goodput of legitimate clients: This is the amount of bytes per
second delivered tall legitimate client applications. Goodput ignores

SWe picked mathopd because of its simplicity.
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Figure 14: Kill-Bots under CyberSlam: Goodput and average response the of legitimate users at different attack rates for both a bae server and its
Kill-Bots version. Graphs show that Kill-Bots substantially improves server's performance under high attack rates.
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(b) Response times of legitimate clientsResponse time is the elapsed 0 [ Ce5i No Atackers 7 . Atack Duration i
time before a request is completed or timed out. We timeadnmn 0l 1 A 1 g

plete requests after 1 minute.

(c) Cumulative number of legitimate requests dropped:This met-
ric measures the total number of legitimate requests dibpjree the
beginning of the experiment until the current time. 20
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5.1.2 Microbenchmarks Experiment Time (secs)

We run microbenchmarks on the Kill-Bots kernel to measuetitne (@) Goodput

taken by the various modules. We use the x&8 sc instruction
to obtain fine-grained timing informatiom;dt sc reads a hardware
timestamp counter that is incremented once every CPU c@eour
2GHz web-server, this yields a resolution @6 nanoseconds. The
measurements are for CAPTCHASs of 1100 bytes.

Attackers | ¢

L Legit |
Legit No Attackers ||

Table 2 shows our microbenchmarks. The overhead resultorg f
sending a graphical puzzle 43 40us (processing http header +serve
puzzle), which means that the CPU can process puzzles thster 0 500 1000 1500 2000 2500 3000
the time to transmit a 1100B puzzle on our 100Mb/s Ethernetw-H pementtmee

ever, the authentication cost is dominated by standarcekente for (b) Average response time of legitimate users

Response Time (secs)
Ok M W s OO N O ©

processing incoming TCP packets, mainly the interrupts Qus per Lot \ IV
packet [30], about 10 packets per TCP connection). ThusCtd 5 o8l | /’ ‘ \‘»f
is the bottleneck for authentication and as showf) 4, performing & os} | /
admission control based on CPU utilization is beneficial. % 04 ! / Puzzles turned ot
§ 02 t{/‘L Bloom catches all attackers
Note also that checking the Bloom filter is much cheaper thaero oL = — AR
operations including the SYN cookie check. Furthermordthee Time(secs)
the SYN cookie check nor the HTTP header processing can be dons :
at line-speed (i.e., for 100Mb/s requests). Hence, forriniog re- %
quests, we perform the Bloom filter check before the SYN omoki < °; S S pov 2000
check (Fig. 16). InStages, the Bloom filter drops all zombie requests; Time(secs)
hence the performance of Kill-Bots is limited by the costifterrupt (c) Admission probability

processing and device driver access. We conjecture thag psiling-
based drivers [30, 39] willimprove performance at highekteates. ~ Figure 15: Comparison of Kill-Bots’ performance to server with no at-
tack when only 60% of the legitimate users solve puzzles. Adtk lasts from

. 600s to 2400s. (a) Goodput quickly improves once bloom cateb all attack-
5.2 Performance of Kill-Bots under CyberSIam ers. (b) Response times improve as soon as the admission gohteacts to

We evaluate the performance of Kill-Bots under CyberSlatacks, the beginning of attack. (c) Admission control is useful bdt in Stage; and

using the setting described §5.1. We assume that zombies cannof Stagez, after bloom catches all zombies. Puzzles are turned off assn

solve CAPTCHAs. We also assume only 60% of the legitimatnesi  as Kill-Bots enters Stagez improving goodput.

solve the CAPTCHASs; the others are either unable or unwillio

solve them. This is supported by the result§ &6. ning of the attack. A server protected by Kill-Bots enduretack rates
multiple orders of magnitude higher than the base servereAthigh

Fig. 14 compares the performance of Kill-Bots with a base (un- attack rates, the goodput of the Kill-Bots server decreasethe cost

modified) server, as a function of increased attack reqagstFig. 14a Of processing the interrupts becomes excessive. Fig. ldlyssthe

shows the goodput of both servers. Each point on the grapieiat- response time of both web servers. The average responsexpes-

erage goodput of the server in the first twelve minutes dfiebegin- enced by legitimate users increases dramatically whenabe server
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is under attack. In contrast, the average response timesos ascess-
ing the server using Kill-Bots is unaffected by the ongoittgek.

Fig. 15 shows the dynamics of Kill-Bots during a CyberSlataik,

with A, = 4000 reg/s. The figure also shows the goodput and meanz

response time with no attack, as a reference. The attackdatyi =

600s and ends at= 2400s. At the beginning of the attack, the good-

put decreases (Fig. 15a) and the mean response time ire(E&s€el5b).
Yet, quickly the admission probability decreases (Fig.)16ausing

the mean response time to go back to its value when there i$-no a

tack. The goodput however stays low because of the relathigh
attack rate, and because many legitimate users do not apswzaes.
After a few minutes, the Bloom filter catches all zombie IPa sz
ing puzzles to no longer be issued (Fig. 15c). Kill-Bots nowves

to Stagez and performs authentication based on just the Bloom fil-

ter. This causes a large increase in goodput (Fig. 15a) dbetto
the admission of users who were earlier unwilling or unablsdive
CAPTCHAs and the reduction in authentication cost. In thiseei-
ment, despite the ongoing CyberSlam attack, Kill-Botsfpenance

in Stages (t = 1200s onwards), is close to that of a server not under 0

attack. Note that the normal load significantly varies wiithet and the
adaptive controller (Fig. 15c) reacts to this load between 1200s

andt = 2400s keeping response times low, yet providing reasonable

goodput.

5.3 Kill-Bots under Flash Crowds

We evaluate the behavior of Kill-Bots under a Flash Crowd. éfvii-
late a Flash Crowd by playing our Web logs at a high speed tergém
an average request rate of 2000 reqg/s. The request rate twenis
no flash crowd is 300 req/s. This matches Flash Crowd reqat=t r
reported in prior work [25]. In our experiment, a Flash Crestalrts at
t = 1200s and ends at = 3000s.

Fig. 16 compares the performance of the base server agansétl+
Bots mirror during the Flash Crowd event. The figure showsdjre
namics as functions of time. Each point in each graph is aragee
measurement over a 30s interval. We first show the total ¢imout
of both servers in Fig. 16a. Kill-Bots has slightly lowerdhghput for
two reasons. First, Kill-Bots attempts to operatgat 12% idle cy-
cles rather than at zero idle cycles. Second, Kill-Bots gsase of the
bandwidth to serve puzzles. Fig. 16b reveals that the thmouigfig-
ures are misleading; though Kill-Bots has a slightly lonmoughput
than the base server, its goodput is substantially highero& 100%
more). This indicates that the base server wasted its thpugon
retransmissions and incomplete transfers, whereas Kilt-Bsed its
admission control policy to prevent server’s overload. sTikifurther
supported by the results in Fig. 16c and 16d, which show tiiaBits
drastically reduces the average response time and thegavianze for
connection establishment.

That Kill-Bots improves server performance during Flasov@ts might
look surprising. Although all clients in a Flash Crowd caswaer the
graphical puzzles, Kill-Bots computes an admission prdiaty such
that the system only admits users it can serve. In contrasts@server
with no admission control accepts additional requeststimiosystem
even when it is overloaded, which decreases throughputesmbnse
time. Fig. 16e supports this argument by showing how the ssion
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Figure 16: Kill-Bots under Flash Crowds: The Flash Crowd event begins
at t = 1200s and ends att = 3000s. Though the throughput of Kill-Bots

is slightly lower than that of the base server, its Goodput isnuch higher
and its average reponse time is much lower.

and the Kill-Bots server. Interestingly, the figure showat tKill-Bots

probability« changes during the Flash Crowd event to allow the servéifops more sessions but fewer requests than the base Semedrase

to shed away the extra load.

Finally, Fig. 17 shows the cumulative number of dropped estmiand
dropped sessions during the Flash Crowd event for both e dever
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server accepts new sessions more often than Kill-Bots lepkdrop-
ping their requests. Kill-Bots drops sessions early dutimgyauthen-
tication phase, but once a session is admitted it is givenllaBléts
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Figure 17: Cumulative numbers of dropped requests and dropped ses-
sions under a Flash Crowd event lasting from¢ = 1200s to ¢t = 3000s.
Kill-Bots adaptively drops sessions upon arrival, ensurig that accepted
sessions obtain full service, i.e. have fewer requests dmped.
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Figure 18: Server goodput substantially improves with adaptive admis
sion control. Figure is similar to Fig. 7 but is based on widearea experi-
ments rather than analysis. (For clarity, the Bloom filter is turned off in
this experiment.)

cookie which allows it access to the server for the next haliaur.

5.4 Importance of Admission Control

In § 2.3.1, using a simple model, we showed that authenticatiowt
enough, and good performance requires admission contrigl. 18
provides experimental evidence that supports adaptingdh@ssion
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Figure 19: Comparison between 2 attack strategies; A fast strategy thta
uses all fresh zombie IPs in a short time, and a slow strategyat consumes
fresh zombie IPs slowly. Graphs show a tradeoff; the slowertte attacker

consumes the IPs, the longer it takes the Bloom filter to detéall zom-

bies. But the attack caused by the slower strategy though léslonger has
a milder impact on the goodput and response time.

Case Fraction of Users
Answered puzzle 55%
Did not answer puzzle 45%

Interested surfers who answered puzglé4%

Table 3: The percentage of users who answered a graphical puzzle to
access the Web server. We define interested surfers as thosbonaccess
two or more pages on the Web site.

probability and our analysis i§12.3. The figure compares the goodpuf zombie IP every 5 seconds. In this experiment, the totabeurof

of a version of Kill-Bots that uses only puzzle-based autication,
with a version that uses both puzzle-based authenticaitdradmis-
sion control. We turn off the Bloom filter in these experingebécause
we are interested in measuring the goodput gain obtainedfoorh
admission control. The results in this figure are fairly $&mio those
in Fig. 7. It shows that admission control dramatically s&ses server
goodput. Further, the goodput of the server that uses atmissntrol
decreases more gracefully with increased attack rates.

5.5 Impact of Different Attack Strategies

The attacker might try to increase the severity of the attackoro-
longing the time until the Bloom filter has discovered alkak IPs
and blocked them, i.e., prolonging the time until the systemsitions

zombies in the Botnet is 25000 machines, and the aggredatk aate

is constant and fixed at, = 4000 reg/s. The figure shows that the fast

attack strategy causes a short but high spike in mean respions,
and a substantial reduction in goodput that lasts for a shtetval
(about 13 minutes), until the Bloom filter catches the zombi®n
the other hand, the slow strategy affects the performanca fonger
interval (about 25 minutes) but has a milder impact on gobdpal
mean response time.

5.6 User Willingness to Answer CAPTACHAS

We conducted a user study to evaluate the willingness o$useolve

CAPTCHAs. We instrumented our research group’s Web senver t

present puzzles to 50% of all external accesses tnttex.htmipage.

from Stage; to Stages. To do so, the attacker needs to slowly us€lients that answer the puzzle correctly are given an HT TdRieathat

the set of IP addresses in her Botnets, keeping fresh IPs fong as
possible. We show however, that the attacker does not gaah oy
using her IP zombie addresses slowly. Indeed, there is adffade-
tween using all zombie IPs quickly to create a severe attarch §hort
period, and using them slowly to prolong a milder attack.

Fig. 19 shows the performance of Kill-Bots under two attacktsgies;
A fast strategy in which the attacker introduces a fresh zertbevery
2.5 seconds, and a slow strategy in which the attacker integifresh
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allows them access to the server for an hour. The brief exmget
lasted from Oct. 3 until Oct. 7. During that period, we regisetl a
total of 973 accesses to the page, from 477 distinct IP aseses

We want to compute the fraction of human users that solvehigap
puzzles to access the server. When a client fails to solvpubele,
we need to determine whether the client is a frustrated huonam
automated script. Some automated requests are easy tdyidmmt
cause the User Agent Field in the HTTP request states it ib@(eg.



Googlebot); others are not so easily identified.

We compute two types of results. First, we filter out requésis
known robots and compute the fraction of clients who answerg
puzzles. We find that 55% of all clients answered the puzzks.
explained above, this number underestimates the fracfitrumans
that answered the puzzles. Second, we distinguish betviiearsavho
check only the group’s main page and leave the server, aise thiho
after accessing the main page follow one of the links thenéia call

from DDoS attacks. Our work differs from theirs as we use CBPIRs
only as an intermediate step to detect the offending IP addseand
discard their packets. Furthermore, we combine autheiticavith
admission control and focus on efficient kernel impleméaoiat

(c) Flash Crowds and Server Overload:The authors of [20, 24, 56,
19, 57] discuss the importance of admission control in inimg the
performance of servers under overload and propose vardrasaion
control schemes. Also, much prior work has looked at extessto

the latterinterested surfersWe would like to check how many of the the operating system that allow better resource manageamehim-
interested surfers answered the graphical puzzle bechase tisers proved server performance during periods of overload [#2,13].

probably bring more value to the Web site. To answer thistipres/e
apply the standard Bayes’ rule:

Pr[A, B|

Pr[A/B] = W’

where, event A is “user solves CAPTCHA" and event B is “user i

an interested surfer”. Using the information in the logs eeplacing

In addition, Jamjoom et. al [25] propose persistent dropmhTCP
SYN packets in routers to tackle Flash Crowds. Finally, A benmof
paper propose to use overlays and peer-to-peer networketblsad
off servers during Flash Crowds [27, 50, 52].

LIMITATIONS & OPEN ISSUES

probabilities by the fraction of users, we find ttt[ B] = 0.507, Pr[A, I8] few limitations and open issues are worth discussing. tFi#I-

0.381 and thus, the probability that an interested surfer ans#ers Bots interacts in a complex way with Web proxies. If all clieibe-
puzzle is0.381/0.507 which is 74%. Tab. 3 summarizes our resultshind the proxy are legitimate users, then the existencesoptbxy has
These results may not be representative of users in thengtteas the no impact on the clients’ surfing experience. In contrast, fbmbie

behavior of user populations may differ from one server tatlaer.

6. RELATED WORK

Related work falls into the following areas.

(a) Denial of Service:Much prior work on DDoS exists; It describes

specific attacks (e.g., SYN flood [45], the Smurf attack [t6&flector
attacks [43]), and presents detection techniques, or pespspecific
solutions and countermeasures. In particular, Moore pt@lpropose
the backscatter technique, which detects DDoS instancesoytor-
ing traffic sent to unused segments of the IP address spacag&at
al. [48] propose a traceback mechanism that allows thewictia DoS
attack to trace the offending packets to their source. Qdsarchers
propose variations on the traceback idea to make it appiidabat-
tacks with a small number of packets [9, 49, 58]. Gil et al [@2fect a
bandwidth flood attack against a Web server by comparinguhger
of packets from client to server with those from server tertli An-
derson et al. propose a modified Internet architecture ttraeqts a
destination from unwanted traffic. Only packets with thétigapabil-
ities are delivered to the destination [11]. The pushbaék [iBoposal
modifies the routers to detect big bandwidth consumers aopbgate
this information toward upstream routers to throttle tradfir closer
its the source. Juels and Brainard propose to use commahtibent
puzzles to counter SYN flood attacks [26]. In addition, a fewne
mercial filters exist such as Webscreen which uses hewristidetect
abnormal traffic and attack patterns [31, 8, 5].

Recently, researchers have proposed to use overlays alsuted fire-
walls [10, 28]. The server IP address is known only to the layer

shares the proxy with legitimate clients and uses the proxyaunt

an attack on the Web server, Kill-Bots will learn the prox{Psaddress
and block all requests from that proxy, including the onesfiegit-

imate users. Thus, Kill-Bots imposes fate sharing on di¢hat use
the same proxy. Similarly, it imposes fate sharing on ctiehait use a
single NATed IP address.

Second, the system has a few parameters which we have aksajne
ues based on intuition and our experience with the opeiatiemnvi-
ronment. For example, we example, we set the Bloom filtestiolel

& = 32 because we want to allow the legitimate users to drop a num-
ber of puzzles because of congestion or indecisivenessutitieing
punished. There is nothing special about 32, but we needua vaht
is neither too big nor too small. Similarly, we allow a clighat an-
swers a CAPTCHA a maximum of 8 parallel connections becéaise t
number seems to provide a good tradeoff between the impnosed
formance gained from parallel connections and the desilienibthe
resources that might be lost because of a compromised coOkier
system parameters are similarly chosen based on intuiti@xgmeri-
mentation.

Third, Kill-Bots assumes that the first data packet of the TGRnec-
tion will contain theGET andCooki e lines of the HTTP request. In
general the request may span multiple packets, but thissmsparely.
Further many application-level firewalls and HTTP proxieaken a
similar assumption [59].

Fourth, eventually, the Bloom filter needs to be flushed sawrepro-
mised zombies may turn into legitimate clients. The Blootefitan
be cleaned either by resetting all entries simultaneouslyyadecre-

Clients who want to access the server have to go through tee ovmenting the various entries at a particular rate. In theréytwe will

lay nodes, which check the incoming packets and apply angssecy
filtering. The authors of [41] extend the overlay approachse graph-
ical Turing tests.

examine which of these two strategies is more suitable.

We have experimented with a few attack strategies. In thedutve
would like to model and analyze the performance of Kill-Botsler

(b) CAPTCHAs: Our authentication mechanism uses graphical tesasly attack strategy. We will use the formalization to try to dbta

or CAPTCHAs. \on Ahn et.

al [55] and several others [29, 46performance guarantees for Kill-Bots that are independéattacker

21] proposed to use CAPTCHAs to identify humans from machinestrategy.

CAPTCHAs are currently a popular user authentication meisha
used by many online businesses and free Web mail provideys[Ge
1]). Morein et. al [41] proposed to use CAPTCHAs for protegti
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8. CONCLUSION



The Internet literature contains a large body of importasearch on
denial of service solutions and countermeasures. The vagirity
of it assumes that the destination can distinguish betweaitious
and legitimate traffic by performing simple checks on thetenhof
the packets, their headers, or their arrival rates. Yeackétrs are in-
creasingly disguising their traffic by mimicking legitineatisers ac-
cess patterns, which allows them to defy traditional filtdilsis paper
focuses on protecting Web servers from DDoS attacks thatjueas
ade as Flash Crowds. Underlying our solution is the assompitiat
most online services value human surfers much more thamzitxol
accesses. We present a novel design which uses CAPTCHAstito- di
guish the IP addresses of the attack machines from thosgitfate
clients. In contrast to prior work on CAPTCHASs, our systeitowb
legitimate users access to the attacked server even if teaynable or
unwilling to solve graphical tests. We have implementeddasign in
the Linux kernel and evaluated it in the Internet. We intemdnike
our implementation publicly available under an open solicemse.
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