
A Musical Approach to Monophonic Audio Transcription
and Quantization

Jeff Hentschel
Northwestern University

j-hentschel@northwestern.edu

ABSTRACT
The transcription of monophonic audio has been attempted for
many years with varying results. This paper proposes a slightly
different approach, by optimizing the pitch tracker to a specific
instrument, the violin. The transcriber then consolidates and
quantizes the data based on different musical assumptions. The
result is a midi file that can be opened into any score editor
supporting midi and be printed out as sheet music.

1. INTRODUCTION
Accurate music transcription, or converting an audio file into a
midi file, is a task that has been tried many different ways over the
years. Past work on monophonic transcription has been done with
various systems such as that with autocorrelation [1]. Polyphonic
transcription less accurate, and therefore will not be discussed.
One good example of this has been implemented in the SONIC
system using adaptive oscillators [4].

Monophonic transcription can help in a variety of ways. Since the
output is a midi file, with onset times, pitches, and intervals, it is
much easier to recreate the original score. This can then be used to
replay the performance. This is especially helpful in jazz music,
where much of the playing is improvised. MIDI files also allow
for different kinds of analysis such as chord progression and
pattern recognition. With note information readily available, it is
also much easier to search for a specific melody if the artist or
title is not available.

2. SYSTEM DESCRIPTION
The system this paper proposes is based on the assumption that
the instrument played is within the frequency range of a violin
(190Hz to 3500Hz). This instrument was chosen because it is a
common instrument and is often monophonic by nature.

Figure 1. System Overview

The system uses the MIDI toolbox [3], and is broken into three
major parts: pitch tracking, note consolidation, and quantization.
Figure 1 shows the overview of the system. An audio file is sent
through a pitch tracker with a user-inputted tempo. The output is
then consolidated into a matrix as used by the MIDI toolbox
called a notematrix. This creates the notes, note durations, onset
times, and amplitudes of each note. The data is then quantized
based on different musical commonalities, and exported to a midi
file. This file can be read by many applications such as Logic,
Sibelius, or Finale, and printed out as sheet music.

2.1 Pitch Tracking
The first step in audio transcription is extracting the pitch values.
For this, I use a slightly modified version of Boersma’s pitch
tracker [2]. The tracker uses the harmonics-to-noise ratio in the
autocorrelation domain. I modified the frequency range to 190Hz
to 35kHz as this is the approximate range of the violin. The
OctaveCost and OctaveJumpCost were set to .11 and .7. The
VoicedUnvoicedCost was set to .8. These values were chosen
because they gave more accurate pitches than the default values.

2.2 Note Consolidation
Since the pitch tracker only gives a list of the pitches found, it is
necessary to extract individual note durations and onset times for
the audio. Occasionally, the pitch tracker will output very short
spurious notes. To solve this problem, the equation shown in
figure 2 is used to determine the shortest note allowed.

!

60

BPM
"

1

tol # (tol " tolVar)

Figure 2. Note Tolerance Value
Here, the BPM is the tempo in beats per minute, tol is the shortest
note allowed (16 is default), and tolVar is a percentage of
tolerance (set to .45 by default).
The consolidation algorithm goes through the output of the pitch
tracker. It first records an onset time. It then compares each pitch
to the previous pitch. If they are the same, it adds to the note
duration, and continues. If they are different, it recognizes the
segment as a complete note, and, if the duration is more than the
tolerance found in figure 2, adds it to the notematrix, and starts
calculating the next note. To find the velocity, or amplitude of the
note, it uses the maximum found.

Velocities are then rounded and scaled to 0 to 120. All rests
(denoted by a midi value of 0) at the end are cut off since they do
not affect the midi output.

2.3 Quantization
The final step in the transcription process before outputting to
midi is quantization. This system is able to quantize onset times
and durations to 4th, 8th, 12th, and 16th notes based on distances to

the closet value. The system also uses commonalities in music and
performance to weight certain properties.

The first is based on onset time. Since it takes time for an
instrument to create the sound, it is more common for a note to be
played late, rather than early. This can create a faulty onset time if
the note was played closer to an earlier time. The weight adds .1
to the distance of notes played early. This helps create a more
accurate onset time.
The second cost used affects note duration. Performers will
usually end a note early in preparation for the next note. To
mitigate this problem, .15 is added to all distances longer than the
actual duration. This helps create a more accurate note duration.
The last two costs deal with triplets (12th notes). Triplets are often
hard to quantize since they can easily be confused with 8th and
16th notes. As triplets are usually in groups of three, the stdTriplet
cost is set to .5 (50%) and is used to weight triplets as such. While
it is possible, it is uncommon for triplets to start with a rest. When
the algorithm finds a note that would have a triplet rest before it, it
adds the tripRestCost (50%) to the distance.

Two other logical quantization techniques involve pickup notes,
and polyphony. If a pickupBool is set to false (default), all space
at the beginning is removed. This can be very useful since there is
often some silence before the song starts. If the quantizer finds
two notes at the same time, it sets the second note to start
immediately after the first note. This is done since the original
audio was monophonic and it is impossible for there to be any
polyphony.

Once all the distances are measured, the onsets and durations are
set to the closest values. The resulting matrix is then exported to a
midi file.

3. EXPERIMENTAL SECTION
To test the transcription algorithm, I created a corpus consisting of
24 different audio files averaging around 5 sec. in length. They
were played on violin and through a synthesizer patch to get 48
audio files. They were compared to 24 matching midi files.

3.1 Corpus Construction
The real violin data was created with a Carlo Robelli electric
violin thru a DigiTech RP200A pedal. The settings were as
follows: There was no pickup/wah. The compressor was set to
fast, an amount of 10, and a gain of 0. The CLEAN2 amp setting
was used with a level of 99 and gain of 30. The equalizer was set
to bass=4, mid=2, and treble=5. The cabinet was set to warm 4,
with no gate. The reverb was set to club, with a decay of 39 and
level of 38. The expression pedal was not used during recording,
but is set to the pre-volume setting. These settings were used
because they give a nice warm, clean tone with no effects. The
audio was recorded in stereo 16-bit, 44.1kHz in Sound Designer II
format using Logic Express 6. The files were then later converted
into monophonic WAV files using QuickTime Pro.

The synthesized audio corpus is the same music as the real violin.
This was done so that a comparison could be made between a live
performance and a synthesized performance. The audio was
recorded in Logic Express 6 using the ES2 synthesizer. The 003
STR Easy Bowing HM patch was used to create the sounds. The
audio clips were then bounced to monophonic WAV format.

3.2 Evaluation method
To evaluate the performance of the transcription program, two
types of distance functions from the MIDI toolbox were used. The
pcdist1 function measures the distance between the pitch classes.
The durdist1 function measures the distance between the
durations of the original and transcribed MIDI files. Since both
pitch and note duration are important in music, the average of the
two values was used. The range of possible values is from 0 to 1.
Both transcribed violin files and the transcribed synth files were
compared to the original files to determine whether human
performance affected the system.

3.3 Results
Overall, the transcription program seemed to work well. Table 1
shows the complete results. A graph of the results is shown in
figure 3. The best results are bold italicized in red. The top 5
results are italicized in red.

Table 1. Transcription Results

 Audio
 Violin Synth Diff

File 01 0.9272 0.9035 0.0237
File 02 0.7888 0.8709 -0.0821
File 03 0.9589 0.9947 -0.0358
File 04 0.8824 0.9398 -0.0574
File 05 0.8617 0.9170 -0.0553
File 06 0.9309 0.9492 -0.0183
File 07 0.8699 0.8926 -0.0227
File 08 0.5000 0.4006 0.0994
File 09 0.4249 0.6167 -0.1918
File 10 0.8099 0.9169 -0.1070
File 11 0.8497 0.8180 0.0317
File 12 0.6593 0.9810 -0.3217
File 13 0.7256 0.9959 -0.2703
File 14 0.3269 0.9145 -0.5876
File 15 0.6621 0.7982 -0.1361
File 16 0.4445 0.4875 -0.0430
File 17 0.7229 0.5958 0.1271
File 18 0.7567 0.6620 0.0947
File 19 0.8554 0.6136 0.2418
File 20 0.7975 0.7827 0.0148
File 21 0.8704 0.7084 0.1620
File 22 0.7732 0.6844 0.0888
File 23 0.6914 0.5515 0.1399
File 24 0.9033 0.8452 0.0581

Average 0.7497 0.7850 -0.0353
Median 0.7932 0.8316 -0.0205

Std. Dev. 0.1720 0.1723 0.1779

Figure 3. Transcription Results

The third corpus data file was transcribed the most accurately in
both versions, with the .9589 and .9947 for the violin and synth
versions respectively. The worst transcribed violin file was file
14, which only had a similarity measure of .3269. It was
surprising that the synth version had a similarity of .9145. Such a
drastic difference can be explained by the method used to perform
the clip. The clip on the violin was played by plucking the strings,
or pizzicato. It is possible that since this produced shorter notes,
the pitch tracker had trouble getting the fundamental frequency,
and the quantization step had trouble if the notes were shorter.

Another large problem had to do with octave errors and repeated
note errors. File 8 had several octave jumps and repeated note
errors and did badly on both violin and synth versions.

4. CONCLUSIONS AND FUTURE WORK
While the synthesized versions did slightly better than the real
violin versions, human errors did not have any consistent affect on
the accuracy of the results. Eighty-three percent of the
transcriptions made using the system described in this paper had
similarities over .6 and over 71% had a similarity of at least .7.

Most of the problems seemed to be with octave jumps and
repeated notes.

To further improve the system, a separate onset detector could be
implemented to help solve the repeated note errors. It would also
be good to look into low polyphony. For many stringed
instruments such as the violin, the maximum polyphony that can
be attained is four. Marolt suggested using adaptive oscillators
and a collection of specially tuned neural networks to determine
polyphony [4]. In this system, the user has to input the tempo for
the transcription to work accurately. Later updates would have a
beat-tracker that automatically found the tempo. Finally, it would
be beneficial to test the system using different instruments in the
same range as the violin.

5. ACKNOWLEDGMENTS
I would like to thank Prof. Bryan Pardo for his time spent and his
willingness to help with the project.

6. REFERENCES
[1] Monti, Giuliano and Sandler, M. Monophonic Transcription

with Autocorrelation. Dept. of Electric Engineering, King’s
College London. COST G-6 Conference on Digital Audio
Effects (DAFX-00), Verona, Italy. 2000

[2] Boersma, Paul. Accurate Short-Term Analysis of the
Fundamental Frequency and the Harmonics-to-noise Ratio of
a Sampled Sound. Institute of Phonetic Sciences, University
of Amsterdam, Proceedings 17 (1993), 97-110.

[3] Erola T. and Toiviainen, P. MIR in MATLAB: The MIDI
Toolbox. Dept of Music, University of Jyväskylä, Finland.
2004.

[4] Marolt, Matija. A Connectionist Approach to Automatic
Transcription of Polyphonic Piano Music. University of
Ljubljana. 2001

