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The purpose of the two studies reported here wos to develop an integrated model 
of the scientific reasoning process. Subjects were placed in a simulated scientific 
discovery context by first teaching them how to use an electronic device and then 
asking them to discover how a hitherto unencountered function worked. To do 

this task. subjects had to formulate hypotheses bas’ed on their prior knowledge, 
conduct experiments, and evaluate the results of their experiments. In t,he first 
study, using 20 adult subjects, we identified two main strategies that subjects 
used to generate new hypotheses. One strategy was to scorch memory and the 

other was to generalize from the results of previous experiments. We described 
the former group as searching an hypothesis space, and the latter as searching 
on experiment space. In a second study, with 10 adults, we investigated how sub- 
jects search the hypothesis space by instructing them to state all the hypotheses 
that they could think of prior to conducting any experiments. Following this 

phase, subjects were then allowed to conduct experiments. Subjects who could 
not think of the correct rule in the hypothesis generation phase discovered the 
correct rule only by generalizing from the results of experiments in the experi- 
mentol phase. 

Both studies provide support for the view that scientific reasoning can be 

characterized as search in two problem spaces. By extending Simon and Lea’s 
(1974) Generalized Rule Inducer, we present a general model of Scientific Dis- 
covery as Dual Search (SDDS) that shows how search in two problem spaces (an 
hypothesis space and an experiment space) shapes hypothesis generation, ex- 
perimental design, and the evaluation of hypotheses. The model also shows how 
these processes interact with each other. Finally, we interpret earlier findings 

about the psychology of scientific reasoning In terms of the SDDS model. 
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1. TWO ASPECTS OF SCIENTIFIC DISCOVERY 
The successful scientist, like the successful explorer, must master two related 
skills: knowing where to look and understanding what is seen. The first skill 
-experimental design-involves the design of experimental and observa- 
tional procedures. The second skill -hypothesis formation-involves the 
formation and evaluation of theory. Historical analyses of scientific dis- 
coveries (e.g., Conant, 1964; Mitroff, 1974) suggest that the interaction 
between experimental design and hypothesis formation is crucial to the suc- 
cess of the real scientific endeavor and that both activities are influenced by 
the semantics of the discovery context. 

However, this interaction can be quite complex; consequently, the im- 
plicit research strategy in most psychological studies of scientific reasoning 
has been to investigate each skill in isolation and in semantically lean con- 
texts. This strategy has yielded many important findings about distinct stages 
of the scientific reasoning process, but much remains to be learned about 
how the stages interact and about how the interaction is influenced by prior 
knowledge. The goal of the work described in this paper is to extend the 
earlier laboratory studies by investigating scientific reasoning in a context 
that requires a rich interaction among the processes of hypothesis formation 
and experiment design. Based upon the analysis of our subjects’ behavior in 
this situation, we propose a framework that integrates the processes involved 
in scientific reasoning, and then use it as a basis for reinterpretation of some 
important issues in the area. 

1.1. Laboratory Studies of Scientific Reasoning: Two Exemplars 
In order to provide a background for our proposed extensions, in this sec- 
tion we summarize two of the best-known laboratory simulations of scien- 
tific reasoning. Consider first the series of investigations stimulated by 
Bruner, Goodnow, and Austin’s (1956) elegant work on concept learning 
(e.g., Bourne & Restle, 1959; Hunt, 1962; Shepard, Hovland, 8~ Jenkins, 
1961; Whitman & Garner, 1963). The focus of this work is on how subjects 
select instances from a predefined set in order to evaluate hypotheses and 
how they form new hypotheses on the basis of feedback about those in- 
stances (e.g., Bower & Trabasso, 1964; Levine, 1966; Restle & Greeno, 
1970). Instances usually vary in terms of the values of a set of constant attri- 
butes, and the rule to be discovered is an arbitrary combination of these 
values. Bruner et al. (1956) discovered that even in this relatively simple 
context, subjects use several different strategies for gathering information 
about hypotheses and they suggested that the different strategies had differ- 
ent levels of “cognitive strain.” This interaction between strategies and 
short-term memory demands was fully articulated by Gregg and Simon 
(1967), and Green0 and Simon (1984) provide a brief summary of much of 
the intervening work on concept induction. 
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As Bruner et al. argued, the concept-learning task is relevant to real science 
because it involves two essential components of the scientific reasoning pro- 
cess: the logic of experimentation and strategies for discovering regularities. 
Unfortunately, this relevance played only a minor role during the next 25 
years, as most investigators studied the task for its own sake (Bourne & 
Dominowski, 1972; Medin &Smith, 1984; Neimark & Santa, 1975). The aim 
of the work presented here is to return to one of the original motivations for 
the Bruner work-the laboratory study of scientific reasoning-and to ex- 
tend that paradigm along several dimensions so as to bring it even closer to 
the real nature of scientific reasoning. First, instead of choosing from a set 
of pre-defined “experiments” (instances), our subjects will have to design 
experiments of modest complexity. Second, the mapping between experi- 
ments and hypotheses will be nonobvious, whereas in the concept learning 
task, both instances and hypotheses are described in exactly the same lan- 
guage. Third, feedback from experiments will be multivalued rather than 
just binary. Finally, we will use a context in which prior knowledge and the 
semantics of the situation play a role in the content, form, and plausibility 
of initial hypotheses and in the criteria for revising hypotheses. (The “simu- 
lated universe” tasks used by Mynatt, Doherty, & Tweney [1977, 19781 in- 
clude similar extensions, although their analysis focuses on the logic of con- 
firmation and disconfirmation.) 

The second widely-known example is the “2-4-6” rule-discovery task in- 
vented by Wason (1960), and used to study scientific reasoning ever since 
(Gorman & Gorman, 1984; Mahoney & DeMonbruen, 1977; Tukey, 1986; 
Tweney et al., 1980; Wason, 1962; Wetherick, 1962). Subjects were asked to 
discover a rule (predetermined by the experimenter) that will classify sets of 
numerical triads, are told that “2-4-6” is an example of a triad that follows 
the rule, and are instructed to generate their own triads in attempting to dis- 
cover the rule. (The experimenter’s rule is typically “any increasing series,” 
but subjects usually propose several much more constrained and compli- 
cated hypotheses before discovering the correct rule.) The experimenter 
provides yes/no feedback about instances and also tells subjects whether or 
not their proposed hypotheses are correct. 

The basic finding from these and related studies is that when subjects de- 
sign experiments, they show a pervasive confirmation bias (Mynatt, Doherty, 
& Tweney, 1977, 1978). They propose a single hypothesis and seek evidence 
that will confirm, rather than disconfirm, it. Mahoney and DeMonbruen 
(1977) found that scientists and nonscientists did not differ in this regard. 
The’ phenomenon is both important and puzzling, and we shall return to it 
at the end of this paper. A common interpretation of such behavior is that it 
reveals fundamentally inadequate scientific reasoning skills, but Klayman 
and Ha (1987) provide a lucid and convincing analysis showing that this 
characterization is unwarranted in most cases. 
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of an hour’s duration at most. One purpose of the present study was to 
devise and execute an experimental study of scientific reasoning within the 
discovery-as-problem-solving framework. 

1.3. Scientific Reasoning as Dual Search: The Generalized Rule Inducer 
In the discussion thus far, we have introduced two dichotomies: one dealing 
with two phases of the discovery.process (hypothesis formation and experi- 
mental design), and the other with two frameworks for understanding the 
psychology of these processes (the concept-learning view and the problem- 
solving view). Our goal in this paper is to replace both dichotomies with an 
integrated view of the discovery process. In this section we provide an initial 
overview of our approach, which we will then elaborate in subsequent sec- 
tions. 

At first glance, the concept-formation and problem-solving approaches 
appear to tackle radically different aspects of the scientific reasoning process; 
yet as we will argue throughout this paper, both traditions can be organized 
into a coherent theory of scientific reasoning. The key to this integration 
comes from Simon and Lea’s (1974) insight that both concept learning and 
problem solving are information-gathering tasks and that both employ guided 
search processes. Simon and Lea have shown how a single information-pro- 
cessing system-called the Generalized Rule Inducer (GRI)-can account 
for performance in problem-solving tasks and a range of rule-induction 
tasks, including concept attainment, sequence extrapolation, and grammar 
induction. The GRI uses the same general methods for both problem-solving 
tasks and rule-induction tasks. The main difference between problem-solving 
and rule-induction is in the problem spaces that are used in the task. The 
rule-induction tasks require search in two problem spaces: a space of rules 
and a space of instances. Problem-solving search, however, takes place in a 
single space: a space of rules. 

The distinctive feature of rule-induction tasks is that proposed rules are 
never tested directly, but only by applying them to instances, and then test- 
ing whether the application gives the correct result. In rule induction tasks 
the subject selects (or is shown) an instance and checks to see whether the in- 
stance confirms or disconfirms the rule. Instance selection requires search 
of the instance space, and changin,g from one rule to another requires search 
of the rule space. Because rule-induction requires two spaces, the tests oper- 
ate in a different space from the hypothesis (rule) generator. Simon and 
Lea’s analysis illustrates how information from each space may,guide search 
in the other space. For example, information about previously generated 
rules may influence the generation of instances, and information about the 
classification of instances may determine the modification of rules. 

The GRI view makes it possible to characterize some further differences 
between the previous research on concept formation and problem solving. 
Because the concept-learning research is concerned with rules derived from 
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well-defined instances, the rule space is usually very simple; it consists of all 
possible combinations of the values and attributes in the instance space. 
Even when subjects have some control over instance selection, as in the 
Bruner et al. (1956) work, the full set of permissible instances is predeter- 
mined. In problem-solving experiments, the structure of problem space is 
usually much more complicated. Rather than being merely the concatena- 
tion of a set of given features, it consists of a series of knowledge states that 
the subject can generate by following a wide variety of strategies. 

1.4. Extending GRI to the Scientific Discovery Process 
Two extensions are required if we are to effect this proposed integration of 
the concept-learning and problem-solving views of scientific reasoning. 
First, we need to study subjects’ behavior in situations that more closely 
resemble the scientist’s environment than the traditional laboratory tasks 
that initially motivated the GRI. Second, we need to extend the GRI to ac- 
commodate the added complexity of the new situation. 

1.4.1. Task Elaboration. With respect to the first extension, we devised a 
task with a more complicated rule space than that used in most concept- 
formation experiments. Specifically, we studied the behavior of subjects 
who were attempting to extend their knowledge about a moderately com- 
plex device. Adult subjects worked with a programmable, multi-functioned, 
computer-controlled robot whose basic functions they had mastered previ- 
ously. (Details will be provided in Section 2.) 

Our analysis focuses on their attempts to discover how a new function 
operates-that is, to extend their understanding about the device. Experi- 
ment construction involves designing an experiment (i.e., a program) and 
predicting the device’s behavior. The analysis phase involves a comparison 
between an observation of what the device actually did and what the current 
hypothesis predicted it would do. Incorrect predictions lead to a revised 
hypothesis and further experimentation. The cycle terminates when subjects 
believe that they have discovered how to predict and control the behavior of 
the device. This task allowed us to observe the interplay between the hypoth- 
esis-formation and experimental-design phases of the discovery process. 

Shrager (1985) showed that when people encounter a novel device, they 
bring to bear a wide variety of (often inappropriate) prior knowledge in for- 
mulating their initial hypotheses about how the device operates. Given the 
influential role of prior knowledge on initial hypotheses, the literature on 
analogical problem solving is relevant to our focus on scientific reasoning. 
Holland, Holyoak, Nisbett, and Thagard (1986) summarize much of this 
recent work. They suggest that the underlying mechanism for retrieving ap- 
propriate prior knowledge involves the summation of activation propagated 
from the elements of the current problem to related elements in memory. 
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Although there have been a few studies addressing the issues of what triggers 
or evokes the appropriate prior knowledge, the process is only partially 
understood (cf. Gick & Holyoak, 1983; Gentner, 1983; Ross, 1984). 

1.4.2. Theoretical Extension. With respect to the second, theoretical, ex- 
tension of GRI, we need to augment the GRI processes in two respects. The 
mapping we propose is between GRI’s two spaces (rules and instances) and 
the corresponding hypothesis space and experiment space involved in the 
discovery process. Thus, we propose that scientific reasoning can be con- 
ceptualized as a search through two problem spaces: an hypothesis space 
and an experiment space. This means that, first, we need to account for the 
identification of relevant attributes, for, unlike the conventional studies, 
our situation does not present the subject with a highly constrained attribute 
space for hypotheses. Second, we need a more complex treatment of the in- 
stance generator, because in our context it consists of an experiment, its 
predicted outcome, and the observation of the actual outcome. The details 
of these extensions will be provided in Section 5. 

We would expect subjects who are attempting to discover some new func- 
tion on a partially-understood device to propose the most plausible and 
“obvious” hypotheses first and to make a sustained effort to prove such 
initial hypotheses true. Thus, it would be useful, to have some characteriza- 
tion of subjects’ initial knowledge about the device and about potentially 
relevant general knowledge. The importance of prior knowledge leads us to 
the final issue in this introduction. 

1.5. The Inseparability of Knowledge and Process 
Most laboratory studies of scientific reasoning attempt to minimize-at 
every stage of the discovery process-the mutual influence of strategy and 
knowledge for the sake of experimental rigor. That is, one class of investi- 
gations deals with the strategies used in solving “scientific” problems, such 
as designing experiments (Case, 1974; Siegler & Liebert, 1975), or formulat- 
ing hypotheses (Kuhn & Phelps, 1982; Wason, 1960), or evaluating evidence 
(Karmiloff-Smith & Inhelder, 1974; Robinson & Hastie, 1985). The other 
class deals with people’s knowledge about the natural world: pendulums, 
balance scales, falling bodies, and so forth (Kaiser, Proffitt, & McCloskey, 
1985; McCloskey, 1983; Stavy, Strauss, Orpaz, 8c Carmi, 1982). But the 
separation is highly artificial. In any real scientific reasoning context, sub- 
stantive knowledge and the form of investigative strategy are mutually in- 
fluential, and the scientist’s knowledge about the topic influences the initial 
hypotheses, the types of experiments conducted, and the way results are 
analyzed (O’Brien, Costa, & Overton, 1986). 

In contrast, our goal is to determine how existing knowledge structures 
determine the initial hypotheses, experiments, and data analysis in a dis- 
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covery task and to elucidate the process whereby relevant constellations of 
prior knowledge influence both the formation of hypotheses and the design 
of experiments. We will focus on how hypotheses are generated by search 
for appropriate frames and on how experiments are designed either to fill in 
unspecified variables in those frames or to explore the permissible range of 
variables. Furthermore, we explore the process whereby experiments lead to 
the development of more knowledge, which in turn leads to the development 
of new hypotheses and different strategies of investigation and analysis. 

2. STIMULATING ASPECTS OF THE DISCOVERY PROCESS 

In this section, we describe the device about which our subjects have to 
reason, some earlier research using the device, and our procedure for study- 
ing scientific reasoning in the laboratory. 

2.1. BigTrak 
The device we use is a computer-controlled robot tank (called “BigTrak”) 
that is programmed using a LOGO-like language. It is a six-wheeled, battery- 
powered vehicle, approximately 30 cm long, 20 cm wide, and 15 cm high. 
Interaction takes place via a keypad on the top of the device, which is illus- 
trated in Figure 1. In order to get BigTrak to behave, the user clears the 
memory with the CLR key and then enters a series of up to 16 instructions, 

Figure 1. The keypad from the BigTrak robot. 
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each consisting of a function key (the command) and a l- or 2-digit number 
(the argument), terminated by the GO key. BigTrak then executes the pro- 
gram by moving around on the floor. 

The effect of the argument depends on which command it follows. For 
forward (1) and backward (1) motion, each unit corresponds to approxi- 
mately one foot. For left (-) and right (-) turns, the unit is a 6” rotation 
(corresponding to one minute on a clock face. Thus, a 90” turn is 15 “min- 
utes.“) The HOLD unit is a delay (or pause) of 0.1 second, and the FIRE 
unit is one auditory event: the firing of the cannon (indicated by appropriate 
sound and light effects). The other keys shown in Figure 1 are CLS, CK, 
and RPT. CLS Clears the Last Step (i.e., the most recently entered instruc- 
tion), and CK ChecKs the most recently entered instruction by executing it 
in isolation. Using CK does not affect the contents of memory. We will 
describe RPT later. The GO, CLR, CLS, and CK commands do not take an 
argument. To illustrate, one might press the following series of keys: 

CLR t 5 - 7 t 3 - 15 HOLD 50 FIRE 2 1 8 GO 

and BigTrak would do the following: move forward five feet, rotate coun- 
terclockwise 42”, move forward 3 feet, rotate clockwise 90”, pause for 5 
seconds, fire twice, and back up 8 feet. 

Certain combinations of keystrokes (e.g., a third numerical digit or two 
motion commands without an intervening numerical argument) are not per- 
mitted by the syntax of the programming language. With each syntactically 
legal key-stroke, BigTrak emits an immediate, confirmatory beep. Syntacti- 
cally illegal key-strokes elicit no response, and they are not entered into pro- 
gram memory. 

2.2. Previous Work with BigTrak 
In our initial investigations using BigTrak, subjects were given no preliminary 
instruction; they were simply handed BigTrak and told to “figure out” how 
it worked. Based on analysis of subjects’ protocols in this “instructionless 
learning” situation, Shrager and Klahr (1986) sketched a framework for 
characterizing the learning process, and Shrager (1985, 1987) constructed a 
computer simulation model of how initial hypotheses are formed and refined. 
The model attempts to form initial hypotheses through a process that Shrager 
calls “view application,” in which previously stored knowledge structures 
are mapped to specific BigTrak elements. For example, if the “calculator 
view” is activated, then a mapping is made between Big Trak’s keys and cal- 
culator keys, and the associated knowledge that calculators have memories 
is used to hypothesize that BigTrak has one also. Shrager’s model focused 
almost entirely on this first phase of the discovery process. Our goal in this 
paper was to establish a procedure that would enable us to track subjects’ 
behavior through the entire cyclical sequence of stages that comprise the 
discovery process. 
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3. STUDY 1: DISCOVERING A NEW FUNCTION 

In this study’, we modified the original Shrager and Klahr procedure in two 
ways. First, we established a common knowledge base about the device for 
all subjects, prior to the discovery phase. Second, we limited the scope of 
the subject’s task to discovering how a single BigTrak function worked. We 
instructed subjects about how to use all function keys and special keys, ex- 
cept for RPT. Subjects learned about the syntax and semantics of the keys 
and about how to combine commands into a program to accomplish some 
goal. All subjects were trained to criterion on the keys described earlier and 
given a fixed set of tasks to accomplish. 

Once the training phase was completed, we entered the instructionless 
phase. Subjects were told that there is a “repeat” key, that it takes a numer- 
ical parameter, and that there can be only one RPT in a program. Then, 
they were asked to discover how RPT works by proposing hypotheses and 
evaluating them. (We suggest that before going further, the reader do the 
following: formulate an initial hypothesis about how RPT works, and then 
construct a BigTrak program to evaluate the hypothesis. This will provide a 
subjective impression of the task facing the subject.) 

3.1. The Influence of Prior Knowledge 
One purpose of the instruction phase was to familiarize subjects with the 
device and the experimental context so that they could function comfortably 
in the discovery phase. A more important goal of the instruction phase was 
to establish a realistic but tractable analog to the real scientific context. 
Scientific work goes on in the context of peviously developed theories that 
provide a background both for the generation of hypotheses and the design 
of experiments. Analogously, by the time our subjects encounter the RPT 
key, they have various models about BigTrak’s functioning as well as gen- 
eral knowledge about what “repeat” means. In the BigTrak context, three 
categories of prior knowledge may influence subjects’ hypotheses about 
how RPT works. 

1. Linguistic knowledge about the meaning of “repeat.” Subjects know 
that repeating something means doing it again and that various linguis- 
tic devices are needed to determine both what is to be repeated and how 
many times the repetition is to occur. There is some ambiguity about 
whether the number of repeats includes or excludes the initial execution 
or occurrence (i.e., does “he repeated it twice” mean two or three utter- 
ances of the same sentence?). 

2. Programming knowledge about iteration. BigTrak is a computer-con- 
trolled device, and subjects with some programming experience may 
draw on knowledge about different kinds of iteration constructs from 

’ We use the term “study” here to distinguish our procedures from our subjects’ “experi- 
ments” with BigTrak. 
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familiar programming languages. Typically, N plays the role of deter- 
mining the number of repetitions, while the scope is determined by syn- 
tactic devices. 

3. Specific knowledge about BigTrak. Based on what they learn during the 
training phase, subjects know that there are two types of keys: regular 
command keys that correspond to specific observable actions and take 
numerical arguments (t , -, etc), and special keys that take no argument 
(CLR, GO, etc.). For all command keys, the numerical argument corre- 
sponds to the number of repetitions of a unit event (moving a foot, turn- 
ing a 6’ unit, firing the cannon once, etc.). Although all command keys 
have an eventual observable consequence, they do not have an immedi- 
ate action. Two of the special keys (CK and GO) do have immediate 
observable consequences. The former executes the most recently entered 
instruction and the latter executes the entire program. Two other special 
keys (CLR and CLS) change an invisible internal state of the device, but 
cause no immediately observable action. 

We predicted that subjects would have difficulty discovering the correct 
hypothesis without extensive experimentation because the different knowl- 
edge sources suggest misleading and conflicting analogies. In most program- 
ming conventions, the element(s) to be repeated follow the repeat indicator, 
the scope is determined by syntax, and the number of repetitions is controlled 
by a variable. On the other hand, a common linguistic form for repeat im- 
plicitly sets the number of repetitions to a single one and the scope to an im- 
mediately preceding entity (“could you repeat that?“). 

Even the specific experience with other BigTrak commands provides con- 
tradictory clues to RPT’s precise function. One potential conflict concerns 
the cues for classification of the type of command. RPT is “regular” in that 
it takes a parameter and does not cause any immediate action, and yet un- 
like any other regular key, it corresponds to no particular behavior. Another 
potential conflict concerns the meaning of the parameter. The subject has to 
determine whether N corresponds to what is to be repeated or to how many 
times it is to be repeated. Finally, prior knowledge about special keys may 
leave subjects uncertain about the domain over which the repeat will occur. 
For the other special keys the domain is either the entire program (CLR and 
GO) or the single previous step (CK and CLS), but the domain of RPT re- 
mains to be discovered. 

3.2. Procedure 
Twenty adult subjects participated. They were Carnegie Mellon undergradu- 
ates participating in the experiment for course credit. All subjects had prior 
programming experience in at least one language. 

The studyfonsisted of three phases. First, subjects were given instruction 
and practice m how to generate a good verbal protocol. Next, the subjects 
learned how to use the BigTrak. The experimenter read the manual to the 
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draw on knowledge about different kinds of iteration constructs from 

I We use the term “study” here to distinguish our procedures from our subjects’ “experi- 
ments” with BigTrak. 



TABLE 1 

Example of a complete protocol. CLR and GO commands have been deleted. 
BigTrak’s behavior is shown in boldface type. 

go2 
M)3 
004 
oQ5 
006 
go7 

M)B 
009 
010 
011 

012 

013 

014 

015 
016 
017 
018 
019 
020 

021 

022 
023 
024 
025 

026 

027 
028 

029 

030 
031 
032 
033 
034 
035 
036 

037 
038 
039 
040 

I4 

Maybe not, uh.. . . . .repeat once 

02:oo I 1 -15 I1 HOLD2 RPTl 
I1 -15 11 HOLD4 

Hmm.. guess that was it. 
EXP: SO WHAT ARE YOU THINKING? 
Urn.. actually I have no idea now. 
I’m trying to figure out what it is. 
Urn.. maybe it repeats the last step. 

Ok, I’m ganna try that. . . . . . . repeat once. 

03:30 I 2 - 30 RPT 1 
I2 - Sg 

All right, that backs up my theory. 
Let me see if I can somehow make sure that that’s what it does 

is repeats the last step however many times that I tell it to, 
so I’m gonna . . . repeat it four times.. 

04:BrJ I 2 - 30 RPT4 
12 - 30 I2 - 30 

That was strange, hmm.. . urn.. . let me see that again. 

04:30 I 2 - 30 RPT4 
I2 - 30 I2 - 30 

Ok, maybe it means repeat the last number.. . 
however many steps before it that I put in, 
that’11 be the number after the repeat. For instance, 
if I put repeat two, it’ll repeat the last two steps. 
if I put repeat five, it’ll repeat the last five steps, 

and if there’s too many.. . 
if the five is more than the number of steps in the program, 
it’ll just end it ot whatever number of steps in the program, 
so. . . repeat one, no, repeat two. 

06:W I 2 ‘- 15 12 FIRE3 RPT2 
12 - 15 12 FIRE3 12 FIRE3 

(conthued) 

EXP: SO HOW DO YOU THINK IT MIGHT WORK? 
uh... it would repeat all of the steps before it, however many times 
I told it to repeat it. 

EXP: WELL. . . SO START WORKING ON IT NOW THEN. 

ok. 
EXP: AND TELL ME EVERYTHING THAT’S GOING ON IN YOUR MIND. 

ok. 
EXP: NOW PRESS CLEAR. 

Ok, urn.. . I’m gonna make it go 

forward two, and then I’m gonna make it repeat that twice. 

00:30 1 2 RPT 2 

13 
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TABLE 1 (Continued) 

041 
042 

043 

044 
045 

046 

047 
048 
049 
050 
051 
052 
053 
054 

055 
056 
057 
058 
059 
060 
061 
062 

063 

064 

065 

066 

067 
068 
069 
070 
071 
072 
073 
074 
075 

All right. I think I might hove gotten it. 

06:30 1 2 - 15 12 FIRE3 RPT3 
I2 -15 I2 FIRE3 - 1S I2 FIRE3 

Ok, I think I’ve gotten it. I’m gonno make it repeat four times. 
. . . wonno repeat four.. . 

07:30 I 2 - 15 12 FIRE3 RPT4 
12 - 15 I2 FIRE3 I2 - 15 I2 FIRE3 

Ok, now I’m trying to figure out which order the repeat step goes. 
If it does the first port of the progrom or if it does. . . if it storts 
from the lost port of the program, where repeat.. . 
if I soy repeat one, does it repeat the first step in the program. 
or does it repeat the lost step I pressed in? Urn. . . repeat that 

step.. . 

09:OO I 2 - 15 12 FIRE 3 RPT 1 
I2 -15 12 FIRE6 

It goes from the last step, 
and I don’t understand why it doesn’t go backwards. 
Maybe it counts back two steps. 
If I put repeat two, it would count bock two steps, 
starting from there and go until the lost step. Alright, 
. . . urn. . . the lost two steps were forward two and fire three, 

so let me try and repeat that again. 

lo:OO I 2 - 15 t 2 FIRE3 RPT2 
12 - 15 12 FIRE3 12 FIRE3 

All right, now if I . . . repeat five.. . 
so if I put repeat four, it should do the whole program over again. 

ll:oo I2 - 15 12 FIRE3 RPT4 
12 - 15 I2 FIRE3 I2 - 15 12 FIRE3 

Well, I think I figured out what it does. 
EXP: SO HOW DOES IT WORK? 
Ok, when you press the repeat key and then the number, 
it comes back that many steps and then starts from there 
and goes up to, uh . . . it proceeds up to the end of the program 

and then it hits the repeat function ogain. 
It can’t go through it twice. 
. . . . . . 
EXP: GREAT 

N repetitions of the last step, and his next experiment (021) does not discrimi- 
nate between the two possibilities. (We call this kind of hypothesis “partially 
specified,” because of the ambiguity. In contrast, the initial hypothesis 
stated earlier (003-004) is “fully specified.“) However, his subsequent com- 
ments (024-025) clarify the issue. The experiment at (021) produces results 
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consistent with the hypothesis that there will be N repetitions (BigTrak goes 
forward 2 units and turns left 60 units), and ML explicitly notes the confirm- 
ing behavior (022). But the next experiment (026) disconfirms the hypothesis. 
Although he makes no explicit prediction, we infer from previous state- 
ments (023-025) that ML expected BigTrak to go forward 2 and turn left 
120. Instead, it executes the entire 1 2 - 30 sequence twice. ML finds this 
“strange” (028), and he repeats the experiment. 

At this point, based on the results of only four distinct experiments, ML 
begins to formulate and verbalize the correct hypothesis-that RPT N causes 
BigTrak to execute one repetition of the N instructions preceding the RPT 
(030-034)-and he even correctly articulates the special case where N ex- 
ceeds the program length, in which case the entire program is repeated once 
(035-037). ML then does a series of experiments where he only varies N in 
order to be sure he is correct (038-046), and then he explores the issue of the 
order of execution of the repeated segment. 

In addition to encoding the verbalizations, we classified the experiments 
according to their length Q, defined as the number of instructions prior to 
the RPT, and the value of N in RPT N. The 11 experiments in ML’s proto- 
col are of four general types, defined by the relation between Nand X: N= 1 
(14, 21, 54); X<N(12, 26, 29); x=N(46, 66); X>N, Nfl (40, 43, 63). In 
Section 3.4.3, we will explain why the first three- of these types of experi- 
ments produce results that are uninformative, at best, and misleading, at 
worst, while the latter type are highly informative. 

3.4. Aggregate Results 
In this section, we present a coarse-grained summary of the data. First (Sec- 
tion 3.4.1), we provide descriptive statistics about the major categories of 
scientific reasoning: hypotheses, experiments, and reaction to experimental 
outcomes. This analysis will show that although our subjects are generally 
successful at this task, their behavior diverges widely from any normative 
model of scientific reasoning. Then we turn to the specific content of these 
categories-that is, to the particular hypotheses and experiments that are 
created during the discovery process. In Section 3.4.2, we describe the most 
commonly proposed hypotheses about how RPT works and introduce the 
hypothesis space, a formal characterization of these hypotheses. We conclude 
the aggregate analysis by shifting our focus from generating and revising 
hypotheses to designing experiments. We summarize the key dimensions of 
subjects’ experiments (Section 3.4.3) and introduce the notion of the experi- 
ment space. In Section 3.5, we describe different strategies used by subjects 
to search both the hypothesis and the experiment space, and, in Section 5, 
we describe a formal model of the process. 

3.4.1. Overall Performance. Nineteen of the 20 subjects discovered how 
the RPT key works within the allotted 45 minutes. The mean time to solution 
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(i.e., when the correct rule was finally stated) was 19.8 minutes (SD=9.6 
min). In the process of discovering how RPT worked, subjects generated, 
on average, 18.2 programs (SD = 11.5). 

Of the 364 programs run by the 20 subjects, 304 were experiments; that 
is, they included a RPT. Another 51 programs were control trials, in which 
the subject wrote a program without a RPT, ran the program, then added 
RPT, and ran the program again. We label the initial program of the pair- 
the one that does not include a RPT-as the control trial. Another 7 pro- 
grams we label as calibration trials: the subject attempted to determine (or 
remember) what physical unit is associated with N for a specific command 
(e.g., how far is 1 1). Only 2 programs that did not contain a RPT were un- 
classifiable. 

We define a “common hypothesis” as a fully-specified hypothesis that 
was proposed by at least two different subjects. Across all subjects, there 
were 8 distinct common hypotheses. Protocols were encoded in terms of the 
fully-specified hypotheses listed in Table 2. Subjects did not always express 
their hypotheses in exactly this form, but there was usually little ambiguity 
about what the current hypothesis was. We coded each experiment in terms 
of the hypothesis held by the subject at the time of the experiment, and 
Table 2 shows the proportion of all experiments that were run in Study 1 
while an hypothesis was held.* (The final two columns in Table 2 will be 
described in Section 4.2.) 

Subjects proposed, on average, 4.6 (SD= 1.3) different hypotheses (in- 
cluding the correct one). Fifty-five percent of the experiments were conducted 
under one of the eight common hypotheses. The partially-specified hypothe- 
ses, which account for 3% of the experiments, are defined as those in which 
only some of the attributes of the common hypotheses were stated by the 
subject. (E.g., “It will repeat it N times.“) An idiosyncratic hypothesis is 
defined as one that was generated by only one subject (e.g., “The number 
calls a little pre-stored program and runs it off.“). Such hypotheses are not 
listed separately in Table 2. For 28% of the experiments, there were no stated 
hypotheses. For some experiments classified in the “no hypothesis” cate- 
gory, subjects may have actually had an hypothesis, but failed to state it; 
however, for reasons to be discussed in Section 3.5, we believe that for most 
of these cases, subjects did, in fact, conduct experiments without an hy- 
pothesis in mind. We will also offer an explanation for partial and idiosyn- 
cratic hypotheses. 

3.4.2, The Hypothesis Space. There is no limit to either the number of 
possible attributes or the number of hypotheses that can be formulated from 
such attributes. Despite this potential for vast variation, the eight common 
hypotheses-which account for over half of the experiments-deal with only 

1 As noted earlier, HSl in Table 2 is the way that BigTrak actually operates. 
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TABLE 2 
Common Hypotheses and Percentage of Experiments Conducted under Each for Studies 1 

and 2. Frequency of Mention of Each in Hypothesis-search Phase of Study 2. 

Hvoothesis’ 

% Experiments Frequency 
under Each Hypothesis of Mention 
Study 1 Study 2 Study 2 

HSI: One repeat of last N instructions. 02 0 5 

HS2: One repeat of first N instructions. 04 0 1 

HS3: One repeat of the Nth instruction. 03 05 5 
HNl: One repeat of entire program. 06 11 1 
HN2: One repeat of the last instruction. 04 09 2 
HCl : N repeats of.entire program. 14 13 5 

HC2: N repeats of the last instruction. 20 26 9 

HC3: N repeats of subsequent steps. 02 0 3 

Partially specified 03 0 1 

Idiosyncratic 14 05 10 

No Hypothesis 28 26 
100 100 

’ Hypotheses are labeled according to the role of N: HS-selector; HN-nil: HC-counter 

four attributes. We can characterize the common hypotheses shown in Table 
2 in terms of these key attributes: The role of N, the type of element to be 
repeated, the boundaries of the repeated element, and the number of repeti- 
tions. The resulting hypothesis space is shown in Table 3, together with an 
abstract test program and an indication (in the rightmost column) of how 
BigTrak would execute the test program, if it operated according to the hy- 
pothesis in question. 

The hypothesis space can also be represented in terms of “frames” (cf. 
Minsky, 1975). The basic frame for discovering how RPT works is depicted 

Rule 

TABLE 3 
Attribute-value Representation of Fully-Specified Common Hypotheses.’ 

N-role Rep-type Bounds X of Reps Prediction 

HSl 
HS2 
HS3 
HNl* 
HN2* 
HCl 

HC2 
HC3 

selector 
selector 
selector 

nil 
nil 
counter 
counter 
counter 

segment 

segment 
instruction 
segment 
instruction 
segment 

instruction 
segment 

last N 

first N 
Nth fm start 
all 
prlor 
all 
prior 
all following 

Test Proaram: abcdRPT2ef 

abcdCDef 
abcdABef 
abcdBef 

abcdABCDef 
abcdDef 
abcdABCDABCDef 
abcdD!ef 
abcdefEFEJ 

’ 1) l rules do not use N: 2) Uppercase letters in predictions show executions under con- 
trol of RPT2: 3) Underlined letters reflect ambiguity in “repeat twice.” 
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at the top of Figure 2. It consists of four slots, corresponding to the four 
attributes listed above: N-role, unit of repetition, number-of-repetitions, and 
boundaries-of-segment. A fully-instantiated frame corresponds to a fully- 
specified hypothesis, several of which are shown in Figure 2. There are two 
principle subsidary frames for RPT, N-role:counfer and N-role:se/ector. 
Within each of these frames, hypotheses differing along only a single attri- 
bute are shown with arrows between them. All other pairs of hypotheses 
differ by more than one attribute. Note that the hypotheses are clustered 
according to the N-role frame in which they fall. No arrows appear between 
hypotheses in one group and the other because a change in N-role requires a 
simultaneous change in several attributes. This is because the values of some 
attributes are linked to the values of others. For example, if N-role is counfer, 
the number-of-repetitions is N, whereas, if N-role is selector, then number- 
of-repetitions is 1. 

This frame representation is a convenient way of capturing a number of 
aspects of the scientific reasoning process. First, it characterizes the relative 

HY1’o’I’HI~‘4lY .I I 
SPACF 
- 

; .,..,,,,; PARTIALLY SPECIFIED 

Figure 2. Frames for hypotheses about how RPT N works. Heavy borders correspond to 
common hypotheses from Table 2; dashed borders correspond to partially specified hypoth- 
eses: orrows indicate that adiacent hypotheses differ olong a single attribute shown on the 

arrow: oil possible hypotheses ore not shown. 
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importance that subjects give to different aspects of an hypothesis. Once a 
particular frame is constructed, the task becomes one of filling in or verify- 
ing “slots” in that frame. The current frame will determine the relevant at- 
tributes. That is, the choice of a particular role for N (e.g., N-role:counter), 
also determines what slots remain to be filled (e.g., number-of-repetitions: 
N), and it constrains the focus of experimentation. 

Furthermore, frames enable us to represent the differential importance 
of different attributes, as the “frame type” becomes the most important 
attribute, and its “slots” become subordinate attributes. This is consistent 
with Klayman and Ha’s (1985) suggestion that “some features of a rule are 
naturally more ‘salient’, that is, more prone to occur to a hypothesis-tester 
as something to be considered” (p. 11). In our context, a frame is constructed 
according to those features of prior knowledge that are most strongly acti- 
vated, such as knowledge about the device or linguistic knowledge about 
“repeat.” When a frame is constructed, slot values are set to their default 
values. For example, having selected the N-role:counter frame, values for 
number-of-repetitions, units and boundary might be chosen so as to pro- 
duce HCl (see Figure 2). 

Recall that subjects were asked to state their hypothesis about RPT before 
actually using it in an experiment. This enabled us to determine what frame 
is constructed by prior knowledge. In Section 3.1, we discussed the possi- 
bility that linguistic knowledge of RPT, programming knowledge about 
iteration, and specific knowledge about BigTrak should conspire to produce 
inappropriate analogies to RPT. This was indeed the case; no subject started 
off with the correct rule. Seventeen of the 20 subjects started with the N- 
role:counter frame. That is, subjects initially assumed that the role of N is 
to specify the number of repetitions, and their initial hypotheses differed 
only in whether the repeated unit was the entire program or the single in- 
struction preceding RPT (HCl and HC2). This suggests that subjects drew 
their initial hypotheses by analogy from the regular command keys, all of 
which determine the number of repetitions of a unit. 

Having proposed their initial hypotheses, subjects then begin to revise 
them on the basis of experimental evidence. Subsequent hypotheses are sys- 
tematically related to initial hypotheses. By representing knowledge in terms 
of frames we can specify the relation among subsequent hypotheses. Of the 
55% of all experiments that were conducted with a fully-specified hypothe- 
sis, nearly two-thirds (.36/.55) were conducted with N-role:cou&er. As 
shown in Table 2, these experiments dealt with HCl, HC2, and HC3, which 
assign N the role of counter; another 10% dealt with HNl and HN2, which 
assign it no role at all. When subjects were exploring a particular frame, 
changes in hypotheses usually differed only in the value of a single attribute. 
(Indicated by connecting arrows in Figure 2). For example, if subjects were 
using the N-role:counter frame, changing the unit of repetition from pro- 
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at the top of Figure 2. It consists of four slots, corresponding to the four 
attributes listed above: N-role, unit of repetition, number-of-repetitions, and 
boundaries-of-segment. A fully-instantiated frame corresponds to a fully- 
specified hypothesis, several of which are shown in Figure 2. There are two 
principle subsidary frames for RPT, IV-role:counter and N-role:selector. 
Within each of these frames, hypotheses differing along only a single attri- 
bute are shown with arrows between them. All other pairs of hypotheses 
differ by more than one attribute. Note that the hypotheses are clustered 
according to the N-role frame in which they fall, No arrows appear between 
hypotheses in one group and the other because a change in N-role requires a 
simultaneous change in several attributes. This is because the values of some 
attributes are linked to the values of others. For example, if N-role is counter, 
the number-of-repetitions is N, whereas, if N-role is selector, then number- 
of-repetitions is I. 

This frame representation is a convenient way of capturing a number of 
aspects of the scientific reasoning process. First, it characterizes the relative 

HYI’o’I’Hl~sls I. I 
SI’ACF 
- 

: ,...,,,, j PARTIALLY SPECIFIED 

I’ 

. . . . y I... . 

‘/ ’ 
HCZ 

:........i....i :.............i 

Figure 2. Frames for hypotheses about how RPT N works. Heavy borders correspond to 
common hypotheses from Table 2; dashed borders correspond to portially specified hypoth- 
eses: arrows indicate that adiocent hypotheses differ along a single ottribute shown on the 
arrow: all possible hypotheses ore not shown. 
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TABLE 4 

Number of Rejections/Retentions of Stoted Hypotheses, 
Given ConfirmingIDisconfirming Evidence, in Study 1. 

All subjects 

Experimenters 
Theorists 

Reject 

Confirm 

21 

17 
4 

Retain 
Confirm 

63 

43 
20 

Reject 

Disconfirm 

60 

44 
16 

Retain 
Disconfirm 

76 

56 
20 

tions preceding the RPT. This yields nearly 500 billion (6”) distinct pro- 
grams from which subjects can choose, even if we ignore different values of 
N for each command. Making the more realistic assumption that subjects 
will tend to limit their experiments to programs having 3 or 4 instructions 
yields a sharply reduced space of between 200 and 1300 (6’ to 63 distinct 
experiments. If we add the additional constraint (in order to avoid ambigu- 
ity) that no command should appear more than once in a program, then 
there are between 120 and 360 distinct experiments that could be run. 

A much more tractable experiment space is one that abstracts over the 
specific content of programs and retains only the values of N and X, the 
length of the program preceding the RPT. This characterization is based on 
the observation that other potentially relevant features of the program- 
such as the specific commands in the program, their sequence, or the value 
of their numerical argument-tend to play only an indirect role in the infor- 
mativeness of the experiments. That is, the importance of specific instruc- 
tions is related only to the observability of their independent effects, rather 
than to RPT. For example, for all of the common hypotheses, [12- 15 
FIRE 11 is a better test sequence than [tit ltltl]. 

Within the N-X space, we identify six distinct regions according to the 
relative value of N and X and their limiting values. They are depicted in 
Figure 3, together with illustrative programs. At the bottom of the figure, 
we indicate which of the common hypotheses would be confirmed by experi- 
ments in each region. Here we define the regions and indicate the general 
consequences of running experiments in each. 

l Region I. One-step programs with N = 1 or 2. Although an incremental- 
ist strategy would suggest that this is a good starting place for exploring 
the experiment space, such experiments are totally undiscriminating: as 
shown in Figure 3, they produce behavior consistent with all but HC3 
in Table 2. Furthermore, the ambiguous’distinction between “repeat 
once” and “repeat twice,” mentioned earlier, is exacerbated with a one- 
step program. Subjects tend not to expect a difference in performance 
in this case, and BigTrak does not yield one. 
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gram to step would correspond to a change from HCl to HC2, or changing 
the bounds from prior to subsequent would produce HC3 as the hypothesis. 
When subjects switch from seeing N-role as counter to seeing it as a selector, 
there is a change in the values of the N-role slot, the unit-of-repetition slot, 
the number-of-repetitions slot, and the bounds slot. Thus, whenever there is 
a shift from one frame to the other, at least three slots must change value 
simultaneously. Fifteen of the subjects make only one frame change, and 
four of the remaining five make 3 or more frame changes. This suggests that 
subjects are following very different strategies for searching the hypothesis 
space. We will return to this issue in Section 3.5; 

By abstracting over the content of hypotheses, we can analyze the logic 
of confirmation and disconfirmation. If subjects responded according to 
the classical norms of the scientific method, they Would reject disconfirmed 
hypotheses and retain confirmed ones (cf. Bower & Trabasso, 1964; Popper, 
1959). The first row of Table 4 shows the effects of all 220’ experimental 
outcomes on subjects’ hypothesis-retention behavior. If subjects were per- 
fectly rational, there would be no cases of rejection following confirmation 
or retention following disconfirmation. Instead, in 25% (21/84) of the in- 
stances where the experimental outcome confirms the current hypothesis, 
subjects change hypotheses, and in over half (76/136) of the disconfirming 
instances, they retain the disconfirmed hypothesis. In other words, for the 
average subject, out of 11 experimental outcomes, there are approximately 
4 cases in which a disconfirmed hypothesis is retained, and 1 case in which a 
confirmed hypothesis is abandoned. This is not to say that subjects are en? 
tirely insensitive to confirmation/disconfirmation information, for their 
responses are far from random (x: = 8.16, p< .005). Nevertheless, they show 
severe departures from the purported canons of good science. These depar- 
tures have been reported by other investigatorsi and we will return to this 
issue in Section 6. 

3.4.3. The Experiment Space. Subjects test their hypotheses by writing 
programs that include RPT and observing l%gTrak’s behavior. The program 
thus becomes the experiment. But it is not immediately obvious what consti- 
tutes a “good” or “informative” experiment; In attempting to construct 
experiments, subjects are faced with a problem-solving task that parallels 
their effort to discover the correct hypotheses, except that in this case search 
is not in a space of hypotheses, but in a space of experiments. Several char- 
acterizations of this space are possible: Here we describe two extreme forms. 

First, consider the space of all “distinct” programs. How large is it? 
There are six different commands, and programs can have up to 15 instruc- 

’ Recall that about 28% of all 304 experiments were pekformed without a stated hypothesis. 
They are excluded from this analysis. 
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are identical, programs in this region are consistent only with HSl (the 
correct hypothesis). For example, the program [I 2- 15 FIRE 4-30 RPT 
31 is inconsistent with every common hypothesis except HSl. 
Region IV. Here, X = N. In addition to HSl, these experiments are con- 
sistent with hypotheses that RPT causes a repetition of the entire pro- 
gram (HNl), as well as with HS2 (Repeat first N steps once). 
Region V. In this region, N is greater than X. In this situation, BigTrak 
effectively sets N equal to X, so experiments in this region tend to sup- 
port the hypothesis that N is irrelevant and than HNI is the correct hy- 
pothesis. 
Region VI. Experiments in this region have one-instruction programs 
with values of N greater than 2. This region is similar to Region V and 
also serves as the testing ground for hypotheses that N corresponds to 
the number of repetitions (HCl-HC3). These hypotheses are discon- 
firmed in this region, but some subjects perseverate here nevertheless. 

Other formulations are possible, but we will use the N- X space in our analy- 
sis. We do not claim that subjects have this elaborated representation of the 
experiment space. Instead, it enables us to classify experiments according to 
the kinds of conclusions that they support. 

3.5. Strategic Variation in Scientific Discovery: 
Theorists and Experimenters 

There is abundant evidence that leads us to expect strategic variation in prob- 
lem solving-ranging from Bruner et al.‘s discovery of different strategies 
in the concept-learning task, to more recent work on strategic differences in 
chess, puzzles, and physics problems (Chase & Simon, 1973; Klahr &Robin- 
son, 1981; Larkin, McDermott, Simon, & Simon, 1980; Simon, 1975), and 
even to such apparently straightforward domains as single digit addition 
(Siegler, 1987). It is not surprising then that analysis of our subjects’ proto- 
cols yielded two distinct experimental strategies. 

As noted earlier, subjects started with the wrong general frame. Conse- 
quently, their early efforts were devoted to attempting to refine the details 
of this incorrect frame. The most significant representational change oc- 
curred when N-role was switched from counter to selector and a new frame 
was constructed. Once subjects made this change, they quickly discovered 
how the RPT key works. How did they do this? Subjects were classified as 
using one of two different strategies according to how they switched from 
the N-role:counter frame to the ZV-role:selector frame. If subjects induced 
the correct frame from the result of an experiment in region III of the ex- 
periment space, they were classified as experiment-space searchers. For con- 
venience, we will refer to them as “Experimenters.” These subjects induced 
the correct frame by searching the experiment space. Thirteen subjects were 
classified as Experimenters. The remaining 7 subjects discovered the correct 
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EXPERIMENT SPACE 

A-3 N-2 
- ’ t3 43+30 ‘rn 

A-l/ N-1 
‘FIFIET’RPTI’ 

>N ‘t3”RPT4’ 

REGION 

I II Ill IV V VI 

HSl + + + + + + 
HS2 + - - + + + 
HS3 + - - - - + 

Hypothesis HNl + - - + + + 
HN2 + + - - - + 
HCl + - - - - _ 

HC2 + + - - - - 

HC3 - - - _ _ - 

Figure 3. Regions of the Experiment Space, showing illustrative programs and confirmation/ 
disconfirmotion for each common hypothesis. (Shown here is only the 10x10 subspace of the 
full 15x15 space.) 

l Region II. Multi-step programs with N = 1. Experiments in this region 
are consistent with hypotheses of the form “it repeats the previous step,” 
such as HC2 and HN2. They rule out hypotheses that the entire program 
is repeated once (HNl) or N times (HCl). 

l Region III. Programs with at least three instructions and a value of N 
less than X and greater than 1. As long as no two adjacent instructions 
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statement of an hypothesis: prior to the discovery of how the repeat works, 
the Experimenters conducted, on average, 6 experiments without statement 
of an hypothesis. Furthermore, these experiments were usually accompanied 
by statements about what would happen if Nor X were changed. By pursuing 
this approach, the Experimenters eventually conducted an experiment in 
region III of the experiment space. As described earlier, experiments in this 
region rule out all the common hypotheses and are consistent only with HSI. 
When the subjects conducted an experiment in this region, they noticed that 
the last N steps were repeated and proposed HSl-the correct rule. 

3.5.3. Performance Differences. While both groups started off with simi- 
lar strategies-using hypotheses to guide search in the experiment space- 
they diverged in the way they searched for new hypotheses once the initial 
hypotheses were abandoned: one group searching the hypothesis space for a 
new hypothesis, and the other exploring the experiment space to see if they 
could induce some regularities from experimental outcomes. The conse- 
quences of these two approaches show up in a few key performance mea- 
sures, as shown in Table 5. T-tests were conducted on the seven means in 
Table 5. Following the procedure suggested by Kirk (1968), the over-all level 
of significance was set at .05; each individual comparison had to be signifi- 
cant at p < .006 to be regarded as significant at the over-all p< .05 level. As 
Table 5 shows, the Theorists took less time to discover how the RPT key 
works than the Experimenters: t (18) = 3.97 p< .0009. The Theorists also 
conducted half as many experiments as the Experimenters; t(18) = 3.09 
p< .006. There was no significant difference between the two groups in 
terms of the number of experiments that were conducted under an explicitly 
stated hypothesis; t (18) = 1.63 p < .12. However, the Experimenters con- 
ducted significantly more experiments in which an hypothesis was not explic- 
itly stated; t(18) = 3.70~ < .002. There were no differences between the two 
groups in the number of different hypotheses stated; t(18) = 1.83 p< .08, 
nor in the number of hypothesis switches; t(18)= 1.93 p< .07. Thus, the 

TABLE 5 
Performance Summary of Experimenters and Theorists in Study 1. 

N 

Time (minutes) 
Experiments 
Experiments with hypotheses 

Experiments without hypotheses 
Different hypotheses 

Hypothesis switches 
Experiment space verbalizations 
NX combinations used 

Experimenters Theorists Combined 

13 7 20 

24.46 11.40 19.40 
18.33 9.29 15.20 
12.30 0.57 11.00 

6.08 0.76 4.2 
4.92 3.06 4.55 
4.76 3.00 4.15 

5.85 0.86 4.10 
9.9 5.7 8.45 
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frame not by searching the experiment space, but instead by searching the 
hypothesis space for an appropriate frame. We call the subjects in this group 
“Theorists.” Theorists did not have to conduct an experiment in region III 
of the experiment space to induce the correct frame. There were other dif- 
ferences among the two groups, but an experiment in region III immediately 
prior to switching frames was the operational basis for classification. 

3.5.1. Theorists: General Strategy. The strategy used by the Theorists was 
to construct an initial frame, N-role:counter, and then to conduct experi- 
ments that test the values of the frame. When they had gathered enough evi- 
dence to reject an hypothesis, Theorists switched to a new value of a slot in 
the frame. For example, a subject might switch from saying that the prior 
step is repeated N times to saying that the prior program is repeated Ntimes. 
When a new hypothesis was proposed, it was always in the same frame, and 
it usually involved a change in only one attribute. 

For Theorists, construction of a new frame was not preceeded by an ex- 
periment in region III, nor was it preceeded by a series of experiments where 
no hypothesis had been stated. Theorists switched frames by searching 
memory for information that enabled them to construct a new frame, rather 
than by further experimentation. Knowing that sometimes the previous step 
and sometimes the previous program was repeated, the Theorists could infer 
that the unit of repetition was variable and that this ruled out all hypotheses 
in the N-role:counter frame-these hypotheses all require a fixed unit of 
repetition. This enabled Theorists to constrain their search for an N-role 
that permits a variable unit of repetition. As will be shown in Study 2, sub- 
jects can construct an N-role:seledor frame without further experimenta- 
tion. Following memory search, Theorists constructed the N-role:selector 
frame, and proposed one of the hypotheses within it. They usually selected 
the correct one, but if they did not, they soon discovered it by changing one 
attribute of the frame as soon as their initial N-role:selector hypothesis was 
disproved. 

3.5.2. Experimenters: General Strategy. Subjects in the Experimenter 
group went through two major phases. During the first phase, they explicitly 
stated the hypothesis under consideration, and conducted experiments to 
evaluate it. In contrast, during the second phase, they conducted many ex- 
periments without any explicit hypotheses. Experimenters used a variety of 
initial approaches. Some proposed new hypotheses by abstracting from the 
result of a prior experiment, and they proposed many hypotheses. These 
were the subjects, described in Section 3.4.2, who made more than a single 
frame change; 4 of them made 3 or more such changes. Others stuck doggedly 
to the same hypotheses, abandoning them only after much experimentation. 

The second phase was an exploration of the experiment space. This can 
be inferred from the number of experiments conducted without explicit 
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of a search of the experiment space, and we have shown that the Experimen- 
ters do indeed use more N - X combinations than the Theorists. Furthermore, 
we have argued that instead of conducting a search of the experiment space, 
the Theorists search the hypothesis space for an appropriate role for ZV. This 
is an important claim for which there was no direct evidence in the proto- 
cols. Therefore, we conducted a second study to test the hypothesis that it is 
possible to think of an N-role:selector hypothesis without exploration of the 
experiment space. 

4. STUDY 2: HYPOTHESIS-SPACE SEARCH AND 
EXPERIMENTATION 

Our interpretation of subjects’ behavior in Study 1 generated two related 
hypotheses: A: It is possible to think of the correct rule via pure hypothesis- 
space search, without using any experimental results; B: When hypothesis- 
space search fails, subjects switch to experiment-space search. In Study 2, 
we directly investigated each of these hypotheses. 

l If Hypothesis A is correct, then it should be possible for subjects to 
propose the correct rule without the benefit of any experimental out- 
comes. Study 1 provided no direct evidence for this hypothesis, because 
no subject in Study 1 mentioned the correct rule without doing at least 
some experimentation. In Study 2, we tested this hypothesis by asking 
subjects to state not just one, but several, different ways that RPT might 
work; before doing any experiments. If subjects can think of the correct 
rule without any experimentation, then this will provide support for the 
view that the Theorists in Study 1 did indeed construct the appropriate 
frame without using experimental input. This was the hypothesis-space 
search phase of Study 2. This phase was followed by the experimental 
phase, in which the subjects were allowed to conduct experiments as in 
Study 1. We expected that subjects who mentioned the correct rule dur- 
ing the hypothesis-space search phase would discover the correct rule 
with relatively little experimentation. 

l Hypothesis B asserts that if hypothesis-space search is unsuccessful, 
then subjects switch to a search of the experiment space. We argued that 
this was the strategy used by the Experimenters in Study 1. This hypoth- 
esis predicts that subjects who fail to discover the correct rule during 
the first phase of Study 2 should not be able to discover the correct rule 
by hypothesis-space search during the second, experimental, phase of 
the task. Thus, we predict that subjects who are unable to generate the 
correct rule in the hypothesis-space search phase will behave like the 
Experimenters of Study 1 and will discover the correct rule only after 
conducting an experiment in region III of the experiment space. 
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l A further goal of Study 2 was to discover whether generation of several 
hypotheses prior to experimentation would change the way subjects 
generated and evaluated experiments. In Study 1, subjects always tested 
hypotheses one at a time; they never conducted experiments that would 
distinguish between a number of hypotheses. In Study 2, having con- 
sidered a number of different hypotheses before entering the experimen- 
tal phase, subjects may test multiple hypotheses in a single experiment. 
Generation of hypotheses before the experimental phase may also make 
the subjects more willing to abandon their preferred hypotheses in the 
face of inconsistent evidence. If so, then even those subjects who do not 
generate the correct hypothesis during phase 1 should conduct signifi- 
cantly fewer experiments than the subjects in Study 1. When an hypoth- 
esis is disconfirmed they will switch to another (previously generated) 
hypothesis rather than continuing with the same hypothesis. 

4.1. Method 

Subjects. Ten Carnegie Mellon undergraduates participated in the experi- 
ment for course credit. Five subjects had taken at least one programming 
course, and the other five had no programming experience. 

Procedure. ?he familiarization part of Study 2 was the same as described 
for Study 1; subjects learned how to use all the keys except the RPT key. 
Familiarization was followed by two phases: hypothesis-space search and 
experimentation. 

The hypothesis-space search phase began when the subjects were asked 
to think of various ways that the RPT key might work. In an attempt to get 
a wide range of possible hypotheses from the subjects, we used three probes 
in the same fixed order: 

1. “How do you think the RPT key might work?” 
2. “We’ve done this experiment with many people, and they’ve proposed 

a wide variety of hypotheses for how it might work. What do you think 
they may have proposed?” 

2. “When BigTrak was being designed, the designers thought of many dif- 
ferent ways it could be made to work. What ways do you think they 
may have considered?” 

After each question, the subject responded with as many hypotheses as 
could be generated. Then the next probe was used. 

Once the subjects had generated all the hypotheses that they could think 
of, the experimental phase began: The subjects were allowed to conduct ex- 
periments while attempting to discover how the RPT key works. This phase 
was nearly identical to the discovery phase of Experiment 1, with a few vari- 
ations in how the data were collected. Instead of videotape recording, we 
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used an audio tape for subjects’ verbalizations. Keypresses were also cap- 
tured on the audiotape by having subjects tell the experimenter what keys to 
press. Otherwise, the procedure was the same as that used in Study 1. 

4.2. Results 

4.2.1. Phase I: Hypothesis-Space Search. Subjects proposed, on average, 
4.2 different hypotheses. All but two subjects began with theN-role:counter 
frame, and 7 of the 10 subjects switched to the iV-role:selector frame during 
Phase 1. The correct rule (HSl) was proposed by 5 of the 10 subjects. 

The last column in Table 2 shows the number of subjects who proposed 
each hypothesis at least once. These numbers are only roughly comparable 
to the other entries in the table (from Studies 1 and 2) because the first two 
columns indicate the proportion of experiments run under each hypothesis, 
while the final column is simply frequency of mention (because subjects ran 
no experiments during the hypothesis-space search phase). Nevertheless, 
some similar patterns emerge. First, all but one of the common hypotheses 
of Study 1 was mentioned by at least 2 of the subjects. Furthermore, as in 
Study 1, hypotheses HCl and HC2 were among the most frequently men- 
tioned hypotheses (indeed, all but one subject proposed HC2). However, 
half of the subjects proposed hypotheses from the N-role:selector frame, 
whereas in Study 1, fewer than 10% of the experiments dealt with hypothe- 
ses from the N-role:selector frame. It is possible that in Study 1 the infor- 
mation gathered from the exploration of the experiment space may have 
inhibited subjects from switching to the IV-role:se/ector. 

4.2.2. Phase 2: Experimentation. All subjects were able to figure out how 
the RPT key works. As can be seen from Table 7 mean time to solution was 
6.2 minutes, and subjects generated, on average, 5.7 experiments and pro- 
posed 2.4 different hypotheses. 

TABLE 7 

Performance Summary of Experimenters and Theorists in Phase 2 of Study 2. 

Theorists Experimenters Combined 

N 4 6 10 
Hove programming experience 4 1 5 

Stated HSl in phase 1 4 1 5 
Time (minutes) 3.3 8.2 6.2 
Experiments 3.0 7.5 5.7 

Experiments with hypotheses 2.0 5.7 4.2 

Experiments without hypotheses 1 .o 1.8 1.5 
Different hypotheses 1.5 3.0 2.4 

Hypothesis switches 1.5 3.0 2.4 

Experiment-space verbalizations 1.0 2.2 1.7 

NX combinations used 2.5 5.7 4.4 
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l A further goal of Study 2 was to discover whether generation of several 
hypotheses prior to experimentation would change the way subjects 
generated and evaluated experiments. In Study 1, subjects always tested 
hypotheses one at a time; they never conducted experiments that would 
distinguish between a number of hypotheses. In Study 2, having con- 
sidered a number of different hypotheses before entering the experimen- 
tal phase, subjects may test multiple hypotheses in a single experiment. 
Generation of hypotheses before the experimental phase may also make 
the subjects more willing to abandon their preferred hypotheses in the 
face of inconsistent evidence. If so, then even those subjects who do not 
generate the correct hypothesis during phase 1 should conduct signifi- 
cantly fewer experiments than the subjects in Study 1. When an hypoth- 
esis is disconfirmed they will switch to another (previously generated) 
hypothesis rather than continuing with the same hypothesis. 

4.1. Method 

Subjects. Ten Carnegie Mellon undergraduates participated in the experi- 
ment for course credit. Five subjects had taken at least one programming 
course, and the other five had no programming experience. 

Procedure. ?he familiarization part of Study 2 was the same as described 
for Study 1; subjects learned how to use all the keys except the RPT key. 
Familiarization was followed by two phases: hypothesis-space search and 
exp!rimentation. 

The hypothesis-space search phase began when the subjects were asked 
to think of various ways that the RPT key might work. In an attempt to get 
a dide range of possible hypotheses from the subjects, we used three probes 
in the same fixed order: 

1. “How do you think the RPT key might work?” 
2. “We’ve done this experiment with many people, and they’ve proposed 

a wide variety of hypotheses for how it might work. What do you think 
they may have proposed?” 

2. “When BigTrak was being designed, the designers thought of many dif- 
ferent ways it could be made to work. What ways do you think they 
may have considered?” 

After each question, the subject responded with as many hypotheses as 
could be generated. Then the next probe was used. 

Once the subjects had generated all the hypotheses that they could think 
of, the experimental phase began: The subjects were allowed to conduct ex- 
periments while attempting to discover how the RPT key works. This phase 
was nearly identical to the discovery phase of Experiment 1, with a few vari- 
ations in how the data were collected. Instead of videotape recording, we 
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ploring region III of the experiment space. This is consistent with the view 
that when hypothesis-space search fails, subjects must turn to a search of 
the experiment space. 

The differences between the results of Study 1 and Study 2 are striking. 
The main difference is that subjects conducted far fewer experiments in 
Study 2. A prior search of the hypothesis space allows the subjects to gener- 
ate the N-role:selector frame much more readily than in Study 1. This is true 
even for subjects who could not think of the correct rule in the hypothesis- 
space search phase. Furthermore, subjects in this study did attempt to con- 
duct experiments that allow them to distinguish between two hypotheses. 
For example, subjects might be trying to distinguish between two hypotheses 
in the N-role:counler frame: “repeats the previous step N times” and “re- 
peats the previous program N times.” They will write a program and vary 
the value of N; this will quickly bring them into region III of the experiment 
space, and they discover how the RPT key works. Subjects in Study 1 rarely 
designed hypothesis-discriminating experiments, for they usually were deal- 
ing with only a single hypothesis at a time. Thus it took them longer to aban- 
don hypotheses, and they conducted few experiments in region III. 

The substantial influence of prior knowledge is further demonstrated by 
the finding that all of the Theorists, but only one of the Experimenters, had 
prior programming experience. Knowing something about programming 
allowed the Theorists to construct the correct frame, although precisely 
what aspect of programming knowledge was crucial here is undetermined. 
Nevertheless, the interesting finding in this study is that the effect of differ- 
ential prior knowledge propagates through the initial hypothesis-formula- 
tion stage to influence differences in experimental strategies. 

In sum, prior exploration of the hypothesis space had two main effects 
on the experimental phase. First, it allowed subjects to generate hypotheses 
that are in the N-role:selector frame. As a result, subjects quickly switched 
to the N-role:selector frame in the experimental phase. Second, because 
subjects were aware that a number of hypotheses could account for their 
results (even if they were working within the N-role:counter frame), they 
conducted discriminatory experiments. Often the best way of distinguishing 
between hypotheses is to conduct an experiment in region III of the experi- 
ment space. Once subjects conducted such an experiment, they quickly dis- 
covered the correct rule. 

5. A DUAL-SEARCH MODEL OF SCIENTIFIC DISCOVERY 

Recall that the point of departure for our analysis of scientific reasoning is 
Simon and Lea’s Generalized Rule Inducer. GRI was designed to account 
for the results of traditional laboratory studies of problem solving and rule 
induction. As noted in Section 1.3, two extensions are necessary in order to 
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apply the concept of dual-space search underlying GRI to the broader and 
more complex domain of scientific discovery. The first extension involves 
an enrichment of the complexity, depth, and inter-connectedness of the 
phases of the discovery task presented to subjects. This extension was de- 
scribed in Section 2 and the results were described in Sections 3.4 and 3.5. 
We argued that qualitative differences in subjects’ behavior could be in- 
terpreted in terms of differences in how they allocated their search effort 
between a space of experiments and a space of hypotheses. The second ex- 
tension to GRI is a further specification of the processes involved in search- 
ing these two spaces. In this section we describe a model that incorporates 
such extensions. 

5.1. SDDS: General Description 
We start by summarizing the key features of our model of scientific discovery 
as dual search (SDDS). It is proposed as a general model of scientific reason- 
ing that can be applied to any context in which hypotheses are proposed and 
data is collected. The fundamental assumption is that scientific reasoning 
requires search in two related problem spaces: the hypothesis space, consist- 
ing of the hypotheses generated during the discovery process, and the experi- 
ment space, consisting of all possible experiments that could be conducted. 
Search in the hypothesis space is guided both by prior knowledge and by 
experimental results. Search in the experiment space may be guided by the 
current hypothesis, and it may be used to generate information to formulate 
hypotheses. 

SDDS consists of a set of basic components that guide search within and 
between the two problem spaces. Initial hypotheses are constructed by a 
series of operations that result in the instantiation of a frame with default 
values. Subsequent hypotheses within that .frame are generated by changes 
in values of particular slots, and changes to new frames are achieved either 
by a search of memory or by generalizing from experimental outcomes. Our 
description of SDDS will proceed as follows: In Section 5.2, we first intro- 
duce the basic components and their evoking conditions. Then in Section 
5.3.2, we show how the model accounts for the different strategies described 
in Sections 3.5 and 4. 

5.2. SDDS Components 
Because we are proposing SDDS as a general framework within which to 
interpret behavior from any scientific reasoning task, we introduce it at a 
very general level, without reference to our specific BigTrak context. In Sec- 
tions 5.3.2 and 6 we will return to an interpretation of our results. Three 
main components control the entire process from the initial formulation of 
hypotheses, through their experimental evaluation, to the decision that 
there is sufficient evidence to accept an hypothesis. The three components, 
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shown at the top of the hierarchy in Figure 4, are SEARCH HYPOTHESIS 
SPACE,TESTHYPOTHESIS, and EVALUATEEVIDENCE. 

l The output from SEARCH HYPOTHESIS SPACE is a fully specified hypoth- 
esis, which provides the input to TEST HYPOTHESIS. 

. TEST HYPOTHESIS generates an experiment appropriate to the current 
hypothesis (E-SPACE MOVE), makes a prediction, and observes the out- 
come. The output of TEST HYPOTHESIS is a description of evidence for 
or against the current hypothesis, based on the match between the pre- 
diction derived from the current hypothesis and the actual experimental 
result. 

. EVALUATE EVIDENCE decides whether the cumulative evidence-as well 
as other considerations-warrants acceptance, rejection, orcontinued 
consideration of the current hypothesis. 

These processes and their subcomponents are hierarchically depicted in 
Figure 4, which is described in the following paragraphs. 

5.2.1. Search Hypothesis: Subcomponents. SEARCH HYPOTHESIS SPACE 
has two components. If there is no active frame, then the system generates 
one. Usually a new frame has unfilled slots, so the next step is to assign spe- 
cific values to those slots. If there is an active frame, it may require changes 
in some slot values. 

l GENERATE FRAME has two components corresponding to the two ways that a 
frame may be generated 
' EVOKE FRAME is a search of memory for information that could be used to 

construct a frame. This is the process in which the wide variety of prior 
knowledge sources-discussed earlier-would influence the formation of 
hypotheses. We will not attempt a detailed elaboration of how specific 
knowledge elements are activated on the basis of the current context, for 
that would occupy an entire volume. The main purpose of isolating EVOKE 
FRAME in SDDS is to distinguish it from the other possible source’of new 
fKiIIl’2S: INDUCE FRAME. 

' INDUCE FRAME generates a new frame by induction from a series of out- 
comes. 
l The first subprocess in INDUCE FRAME generates an outcome, and the 

second process generalizes over the results of that (and other) outcomes 
to produce a frame. GENERATE OUTCOMES will be described below. The 
specific terminanation rule and the mechanism for cumulating outcomes 
are unspecified. The result from GENERATE OUTCOME is a behavior pat- 
tern that is input to GENERALIZE OUTCOMES, which then attempts to 
generalize over the outcomes in order to produce a frame. 

The distinction between EVOKE FRAME and INDUCE FRAME corresponds to 
the difference between situations in which subjects are able to recall similar 
situations and use them as the basis for constructing initial frames, and situ- 
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ations in which subjects must observe some behavior before they can ven- 
ture even an initial hypothesis. 

l The purpose of ASSIGN SLOT VALUES is to take a partially instantiated frame 
and assign specific values to the slots so that a fully specified hypothesis can 
be generated. It has two components for which we have not specified a pre- 
ferred order. Values may be assigned by using prior knowledge (USE PRIOR 
KNOWLEDGE) or by using specific experimental outcomes (USE EXPERIMENTAL 
OUTCOMES). 
o If there are already some experimental outcomes, then they can be ex- 

amined to determine specific slot values (USE OLD OUTCOMES). 
’ Alternatively, the system can use GENERATE OUTCOME to produce some 

behavior solely for the purpose of determining slot values. 
In the early phases of the discovery process, USE PRIOR KNOWLEDGE plays 
the major role in assigning values, whereas later in the course of experimen- 
tation, USE EXPERIMENTAL OUTCOMES is more likely to generate specific slot 
values. If the system is unable to assign slot values to the current frame (be- 
cause they have all been tried and rejected), then the frame is abandoned, 
and the system returns to GENERATE FRAME. 

The end result of SEARCH HYPOTHESIS SPACE is a fully specified hypothesis, 
which is then input to TEST HYPOTHESIS. Note that “experiments” may be 
run in tW0 different subcontexts in the service Of SEARCH HYPOTHESIS SPACE, 
and that neither of these contexts involve the evaluation of an hypothesis, 
for it is still being formed. 

5.2.2. Test Hypothesis: Subcomponents. TEST HYPOTHESIS uses three 
subcomponents to: formulate an experiment (E-SPACE MOVE), make a pre- 
diction, and run the experiment. 
. E-SPACE MOVE produces an experiment. It will be described below, as it 

is used in several places in the model. 
. MAKE PREDICTION takes the current hypothesis and the current experi- 

ment and predicts specific results, centered on the current focal values. 
. RUN the experiment, OBSERVE the result, and MATCH to expectation. 

RUN produces a description of a discrepancy between the prediction and 
the actual behavior. As depicted here, the expected behavior is gener- 
ated prior to the running of the experiment (during MAKE,PREDICTION). 
However, SDDS allows the computation of what “should have hap- 
pened” to occur folfowirig the running of the experiment, during the 
MATCH process. MATCH requires descriptions of both the expectation 
and the observation as input. 

TEST HYPOTHESIS outputs a representation of evidence for or against the 
current hypothesis; this representation is then used as input by EVALUATE 
EVIDENCE. 
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5.2.3. Evaluate Evidence. EVALUATE EVIDENCE determines whether or 
not the cumulative evidence about the experiments run under the current 
hypothesis is sufficient to reject or accept it. It is possible that the evidence 
is inconclusive and neither situation obtains, in which case EVALUATE EVI- 
DENCE loops back to TEST HYPOTHESIS. Note that the input to the review 
process consists of a cumulation of output from earlier TEST HYPOTHESIS 
cycles. The scope of this cumulation could range from the most recent re- 
sult, to the most salient ones, to a full record of all the results thus far. The 
content of this record could be one of either consistency or inconsistency. 

Additional factors may play a role in EVALUATE EVIDENCE. For example, 
plausibility seems to distinguish some of adults’ and children’s hypotheses, 
particularly those that perform some arbitrary arithmetic operation on N. 
Functionality arguments appear in some of the protocols, and cause sub- 
jects to reject hypotheses that give no role to N, even if they have been con- 
firmed (e.g., “why would it take a number if it’s not used?“, or “why would 
they design a RPT key in the first place?“). Although these factors appear 
to influence behavior, we do not yet have a full understanding of how they 
work. 

5.2.4. Generate Outcome. This process consists of an E-SPACE MOVE, 
which produces an experiment, RuNing the experiment and OBsERving the 
result. 

5.2.5. E-Space Move. Experiments are designed by E-SPACE MOVE. The 
most important step is to FOCUS on some aspect of the current situation that 
the experiment is intended to illuminate. “Current situation” is not just a 
circumlocution for “current hypothesis,” because there may be situations 
in which there is no current hypothesis, but in which E-SPACE MOVE must 
function nevertheless. (This is an important feature of the model, and it will 
be elaborated in Section 5.3.2.) If there is an hypothesis, then FOCUS deter- 
mines that some aspect of it is the primary reason for the experiment. If 
there is a frame with open slot values, thenFOCUs will select any one of those 
slots as the most important thing to be resolved if there is neither a frame 
nor an hypothesis-that is, if E-SPACE MOVE is being called by INDUCE FRAME, 
then FOCUS makes an arbitrary decision about what aspect of the current 
situation to focus on. 

Once the focal value has been determined, CHOOSE sets a value in the Ex- 
periment Space that will provide information relevant to it, and SET deter- 
mines the values of the remaining, but less important, values necessary to 
produce a complete experiment. 

5.3. Comments on the Model 

5.3.1. Memory Requirements. A variety of memory requirements are im- 
plicit in our description of SDDS, and must, by implication, play an impor- 
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tam role in the discovery process. Here we provide a brief indication of the 
kinds of information about experiments, outcomes, hypotheses, and dis- 
crepancies that SDDS must store and retrieve. 

Recall that GENERATE OUTCOME operates in two contexts. Under INDUCE 
FRAME it is called when there is no active hypothesis, and the system is 
attempting to produce a set of behaviors that can then be analyzed by 
GENERALIZE OUTCOMES in order to produce a frame. Therefore, SDDS 
must be able to represent and store one or more experimental outcomes 
each time it executes INDUCE FRAME. 
Another type of memory demand comes from EVALUATE EVIDENCE: in 
order to be able to weigh the cumulative evidence about the current hy- 
pothesis, REVIEW OUTCOMES must have access to the results produced 
by MATCH in TEST HYPOTHESIS. This would include selected features of 
experiments, hypotheses, predictions, and outcomes. 
Similar information is accessed whenever ASSIGN SLOT VALUES calls on 
USEPRIORKNOWLEDGE or USEOLDOUTCOMEStO fillinunassignedSlOtS 
in a frame. 

At this point in the model’s development, the precise role of memory re- 
mains an area for future research. 

5.3.2. The Multiple Roles of Experimentation in SDDS. Examination of 
the relationship among all these processes and subprocesses, depicted in 
Figure 4, reveals both the conventional and unconventional characteristics 
of the model. At the top level, the discovery process is characterized as a 
simple repeating cycle of generating hypotheses, testing hypotheses, and 
reviewing the outcomes of the test. Below that level, however, we can begin 
to see the complex interaction among the subprocesses. Of particular im- 
portance is the way in which E-SPACE MOVE occurs in three different places 
in the hierarchy: 

1. as a subprocess deep within GENERATE FRAME, where the goal is to gen- 
erate a behavior pattern over which a frame can be induced, 

2. as a subprocess of ASSIGN SLOT VALUES where the purpose of the “ex- 
periment” is simply to resolve the unassigned slots in the current frame, 

3. as a component Of TEST HYPOTHESIS, where the’experiment is designed 
to play its “conventional role” of generating an instance (usually posi- 
tive) of the current hypothesis. 

Note that the implication of the first two uses of E-SPACE MOVE is that in the 
absence of hypotheses, experiments are generated atheoretically, by moving 
around in the experiment space. 

SDDS also elaborates the details of what can happen during the EVALUATE 
EVIDENCE process. Recall that three general outcomes are possible: The cur- 
rent hypothesis can be accepted, it can be rejected, or it can be considered 
further. 
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l In the first case, the discovery process simply stops, and asserts that the 
current hypothesis is the true state of nature. 

l In the second case-rejection-the system returns to H-SPACE SEARCH, 
‘where two things can happen. If the entire frame has been rejected by 
EVALUATE EVIDENCE, then the model must attempt to generate a new 
frame. If EVOKE FRAME iS unable to generate an alternative frame, then 
the system will wind up in INDUCE FRAME and will ultimately start to 
run experiments (in GENERATE OUTCOME) in order to find some element 
of behavior from which to do the induction. Having induced a new frame, 
or having returned ~~~~EVALUA?E EVIDENCE with a frame needing new 
slot values (i.e., a rejection of the hypothesis but not the frame), SDDS 
executes ASSIGN SLOT VALUES. Here too, if prior knowledge is inade- 
quate to make slot assignments, the system may wind up making moves 
in the experiment space in order to make the assignments (i.e., GENER- 
ATE OUTCOME under USE EXPERIMENTAL OUTCOMES). In both these 
cases, the behavior we would observe would be the running of “experi- 
ments” without fully-specified hypotheses, This is precisely what we see 
in the second phase of the Experimenters’ behavior (see Section 3.5), 
and for most of the children. 

l In the third case, SDDS returns to TEST HYPOTHESIS in order to further 
consider the current hypothesis. The experiments run in this context 
correspond to the conventional view of the role of experimentation. 
During MOVE IN E-SPACE, FOCUS selects particular aspects of the current 
hypothesis and designs an experiment to generate information about it. 

5.3.3, Extending the Model. As yet, SDDS is not a running computer 
model, rather it is a specification of the control structure for a yet to be built 
program. The actual building of the model will involve a much more exten- 
sive and precise specification of the processes involved. Here we will sketch 
some of the possible extensions to SDDS based on several of the related 
ideas that have emerged in the field of Machine Learning. 

We need to specify how prior knowledge is activated, searched, and utilized 
by the discovery context. SDDS lumps .a11 these processes under EVOKE 
FRAME, yet there are a large number of complex processes that are involved 
in this mapping that we have not addressed. Carbonell’s work on deriva- 
tional analogy (Carbonell, 1986) suggests a number of possible heuristics 
that could be used in the EVOKE FRAME process. Holland, Holyoak, Nisbett, 
and Thagard (1986) have also proposed several mechanisms that effect the 
mapping from prior knowledge to the current experimental context. 

Our notion of partially specified hypotheses is similar to the different 
levels of specificity in Mitchell’s (1979) version spaces. However, it is not 
clear whether complex contexts, such as the one we have been studying, will 
prove as susceptible to the “single representation trick” (Cohen & Feigen- 
baum, 1982) in which both instances and rules can be expressed in the same 



SCIENTIFIC REASONING 39 

representation. As Cohen and Feigenbaum point out, if the trick is inappli- 
cable, then “searches of the two spaces must be coordinated by complex 
interpretation and experiment planning procedures” (p. 368). 

Notable among the models that do not use a single representation for 
rules and instances are the “BACON series” of programs (Langley, Simon, 
Bradshaw, & Zytkow, 1987). When provided with the appropriate sets of 
training instances (which represent the knowledge available to scientists 
working on the problem at that point in history), BACON and its successors 
have been able to rediscover several important scientific concepts. 

Deciding which experiment to conduct next is obviously an important 
process. We have only sketched it at a broad level in our description of E- 
SPACE MOVE and it needs further elaboration. Three approaches to experi- 
ment generation that may be relevant to our implementation of SDDS are 
exemplified by AM, KEKADA, and LEX. Lenat’s (1977) AM also performs 
something analogous to experiment planning when it is attempting to collect 
examples of a concept under refinement, and it uses dozens of general heu- 
ristics to search its experiment space. Of particular relevance to SDDS is the 
way that AM’s search is connected to an extensive prior knowledge base. As 
noted at the outset, we believe that substantive knowledge influences the 
search in both spaces during the discovery process, and the studies reported 
here have indicated some aspects of this influence. Kulkarni and Simon 
(1987) have suggested a number of additional heuristics that scientists might 
actually use to conduct further experiments. Their Experiment-proposer 
heuristics are largely domain-specific and we expect that some of our heuris- 
tics will be also. However, we believe that there are a number of domain- 
independent heuristics that can be used, such as those in LEX (Mitchell, 
Utgoff, & Banerji, 1983). LEX has a problem generator that will allow it to 
formulate the correct hypothesis by generating experiments that discriminate 
between very general and very specific hypotheses which have been formu- 
lated on the basis of previous experimental results (i.e., refining the version 
space). This type of generator would be a component of MOVE IN E-SPACE. 

6. GENERAL DISCUSSION 

Our concern is with both the logic of experimentation and the link between 
the formation of hypotheses and experimental results, so we used a task 
having a number of distinctive characteristics: (a) The concept to be dis- 
covered was moderately complex and was not the concatenation of a num- 
ber of simple features. (b) Instead of just selecting an instance, subjects had 
to create experiments that would produce some behavior. (c) Experimental 
results were the actual behaviors of the device, and the subjects could extract 
much more than one bit of information from them. (d) The correctness of 
an hypothesis was never announced, but had to be determined by the sub- 
jects’ own evaluation of the accumulated evidence. (e) Prior knowledge 
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could influence the strength of initial hypotheses, as well as the ease with 
which alternatives were generated. 

The results of both studies support the view that when subjects attempt 
to discover how a device works, they must search in two problem spaces: an 
hypothesis space and an experiment space. In the previous section, we devel- 
oped a model (SDDS) that embodies this idea. Thus, one important feature 
of SDDS is the way in which it integrates these two searches. A second im- 
portant feature is the articulation of the multiple roles played by experimen- 
tation. In this final section, we will suggest how SDDS can provide a useful 
framework for understanding scientific reasoning in general. Dual-space 
search can be used to understand the development of hypotheses (Section 
6.1), the logic of experimentation (Section 6.2), and strategy differences in 
scientific discovery (Section 6.3). 

6.1. Hypothesis Formation and Scientific Discovery 
One of the central features of SDDS is that it accounts for two different 
aspects of hypothesis generation: how hypotheses are generated and why on 
some occasions there are large differences between adjacent hypotheses, 
while on others there are only minor differences. Consider first how hy- 
potheses are generated. In SDDS, hypotheses can be generated either from 
prior knowledge or by generalizing from the results of prior experiments. 
These two possible knowledge sources play a role both in SEARCH HYPOTHE- 
SISSPACE(EVOKEFRAME and INDUCEFRAME) andin ASSIGNSLOTVALUES 
(~~E~RIoRKN~WLEDOE and ~~EE~PERIMENTAL~UT~OMES).EVOKEFRAME 
has its strongest effect at the beginning of the task; subjects formulate their 
initial hypotheses on the basis of the frame(s) most activated by the features 
of their current focus. Once subjects have exhausted all the relevant values 
of a frame, they will again use SEARCH HYPOTHESIS SPACE. Some subjects 
construct a new frame by using EVOKE FRAME, and others construct it by 
using the results from INDUCE FRAME. 

Differences in the degree of similarity between adjacent hypotheses is a 
consequence of the use of frames. Initial experimentation is directed at the 
resolution of particular slot values within a frame. The slot values are changed 
as a result of prior knowledge (USE PRIOR KNOWLEDGE) or experimentation 
(USE EXPERIMENTAL OUTCOMES). This leads to the postulation of hypotheses 
that differ in only minor respects, as subjects change the values only a few at 
a time. Thus, when subjects search within a frame there will be only minor 
differences between adjacent hypotheses. When new frames are generated, 
there will be large differences between hypotheses: recall that when there is 
a change of frames there is a change in the types of attributes in all the slots, 
resulting in a radically different knowledge state. 
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Previous research can also be interpreted in this manner; for example, 
Mynatt et al. (1977, 1978) used a task in which subjects had to discover the 
laws of repulsion and attraction in an arbitrary “physics world.” Subjects 
had to propose hypotheses and generate experiments (firing particles at test 
objects) to test their hypotheses. While Mynatt et al. were concerned mainly 
with whether subjects attempted to falsify their hypotheses, their results 
suggest that their subjects were exploring frames and switching frames after 
they had exhausted all possible values of the frame. In fact, Mynatt et al. 
(1978) note that many hypotheses were minor variations on a previous hy- 
pothesis-indicating investigation of a frame-and that there were also oc- 
casional large differences in adjacent hypotheses-indicating a switch to a 
new frame. 

Representational change accompanying a new frame can be viewed as a 
form of illumination or insight (cf. Duncker, 1945; Wallas, 1926). As Simon 
(1977) notes, although research on insight commonly assumes that “asking 
the right question is the crucial creative act,” it is more likely that “reformu- 
lation of questions-more generally, modification of representations-is 
one of the problem-solving processes” and that “new representations, like 
new problems, do not spring from the brow of Zeus, but emerge by gradual 
-and very slow-stages.” 

Our results are consistent with this view. None of our subjects started 
with the correct general frame. However, once they were driven to it by 
earlier failed hypotheses and observation of results, they were able to form 
the correct hypothesis. In other words, results of failed experiments forced 
subjects to consider the role of N, and this caused a restructuring of the 
hypothesis space. If restructuring is conceived as generation of a new frame 
then the nature of insight becomes obvious. Insight is not merely the change 
of values in slots of a pre-existing frame, rather it is the instantiation of a 
new frame-this is what is meant by a restructuring of the representation. 
The interaction between the experiment space and the hypothesis space plays 
a crucial role in such restructuring. 

6.2. The Logic of Scientific Inference and SDDS 
Almost all prior research on scientific reasoning has been concerned with the 
logic used in reasoning tasks. Researchers have devoted an enormous amount 
of effort to understanding two aspects of disconfirmation. First, why do 
subjects fail to test potentially disconfirming instances when evaluating hy- 
potheses? Second, why do subjects fail to change their hypothesis in the face 
of disconfirming outcomes?. A third question, raised by our results, is why 
subjects change hypotheses that have just been confirmed. In this section, 
we will suggest how these issues can be interpreted using the SDDS model. 
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6.2.1. Failure to Seek Disconfirmation. One of the most robust findings 
in the scientific reasoning literature is that subjects exhibit a pervasive “con- 
firmation bias.” That is, they prefer to select instances that they expect to 
confirm rather than disconfirm their hypothesis. Klayman and Ha (1987) 
argue that most people follow a heuristic they call a “positive test strategy” 
-“a tendency to examine cases hypothesized to be targets”-and they show 
that, when the probability of an hypothesis being confirmed is small, this 
strategy can provide useful information. Furthermore, a positive test strategy 
provides at least a sufficiency test of one’s current hypothesis. However, if, 
as in Wason’s “2-4-6” task, the probability of confirming one’s hypothesis 
is high, then positive tests will not provide any useful information. Klayman 
and Ha’s analysis suggests that the appropriateness of the strategy depends 
on the distribution of positive and negative instances, although such infor- 
mation is not available to the subject. 

In our task, subjects’ almost invariably followed the positive test strategy: 
They stated that “if BigTrak does this, then my hypothesis is correct.” Ac- 
cording to Klayman and Ha’s argument, our subjects’ strategy was appro- 
priate, because for about 60% of the experiments in Study 1 and Study 2, 
subjects received disconfirming evidence (see Tables 4 and 8). Subjects 
learned that their initial hypotheses were false and so changed to other hy- 
potheses. Thus, even though subjects were looking for evidence that would 
confirm their hypotheses, the hypotheses were usually falsified. 

SDDS provides an interesting extension of this view of confirmation bias. 
As Klayman and Ha note, subjects’ strategies should depend on what they 
think the nature of the instances they encounter will be; if there are many 
positive instances a negative test strategy will be more useful than a positive 
test strategy. Following a positive test strategy and producing a predominance 
of disconfirming evidence forces subjects to either search memory in order 
to construct a new frame or search the experiment space for a data pattern 
that can suggest a new hypothesis. Because the subjects in the Experimenter 
group discovered that regions II and VI of the experiment space discon- 
firmed their initial hypotheses, they switched to regions III, IV, and V. A 
positive test strategy enabled them to avoid further search of uninformative 
regions of the experiment space. 

More generally, a positive test strategy may help scientists in two ways. 
First, it may enable them to avoid perseveration on incorrect frames by 
abandoning EVOKE FRAME altogether in favor of INDUCE FRAME. Second, it 
may influence them to conduct different types of experiments for whatever 
hypotheses they do hold. Kulkarni and Simon (1987) have argued that 
Krebs’s discovery of urea was prompted by an exploration of the experiment 
space. Thus, a positive test strategy may be a useful heuristic in the early 
stages of investigation, as it allows the subject to determine those types of 
instances that are worthy of further experimentation. In our study, search 
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of the experiment space is initially guided by a positive test strategy, but 
because so few regions of the experiment space are consistent with initial 
hypotheses, this strategy provides useful information as to which parts of 
the experiment space to search next. The generality of this finding remains 
to be demonstrated, but it suggests some interesting further studies. 

6.2.2. Tolerating Disconfirming Evidence. Recall that our subjects fre- 
quently maintained their current hypotheses in the face of negative informa- 
tion. In Study 1, fewer than half of the disconfirming outcomes lead to 
immediate hypothesis changes. SDDS suggests some possible explanations 
for this behavior. One contributing factor is the probabalistic nature of the 
basic processes underlying TEST HYPOTHESIS and EVALUATE EVIDENCE. An 
unanticipated consequence of the complexity of our procedure was that- 
due to the fallibility of memory and of the OBSERVE & MATCH processes- 
the feedback subjects received had some probability of error. That is, from 
the subjects’ perspective, there might be error in either the device behavior, 
their encoding of that behavior, or their recall of the current program and 
associated prediction. Gorman (1986) demonstrated that when subjects are 
told that there is some probability of error in the feedback received during a 
ruie discovery task they tend to “immunize” their hypotheses against dis- 
confirmation by classifying disconfirming instances as the erroneous trials. 
Thus, some cases of perseveration may result from subjects simply not be- 
lieving the outcome and attributing the apparent disconfirmation to one of 
several fallible processes. The most likely candidates for this explanation are 
the cases in which the subject not only retains a disconfirmed hypothesis, 
but actually repeats exactly the same experiment (see 26-29 in Table 1). 
Another error-related cause of perseveration may be even simpler: Subjects 
erroneously encode the disconfirming behavior as confirming behavior. 

The non-deterministic nature of experimental evidence can also have an 
effect on the decision mechanism in EVALUATE EVIDENCE. This process is 
based not only on whether the result of the prior experiment rules out the 
hypothesis, but also on whether enough evidence has accumulated to accept 
or reject the hypothesis. The amount of evidence in favor of an hypothesis 
and the strength of the hypothesis both determine when subjects will con- 
tinue to hold or will switch an hypothesis. Only when the cumulative discon- 
firming evidence exceeds a criterion will an hypothesis be changed. In .the 
present study, subjects had general sources of prior knowledge that predis- 
posed them to the N-role:counter frame. These hypotheses had a high apriori 
strength and needed much disconfirming evidence to be rejected. However, 
once the initial hypotheses were rejected, subjects conducted few experi- 
ments on subsequent hypotheses. Because these subsequent hypotheses had 
lower strength, any evidence that appeared to contradict them quickly led to 
their rejection. Other authors have made similar observations. O’Brien et 
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al., for example, note that “subjects are less likely to take evidence as con- 
clusive when their presuppositions about the content domain discourage 
them from doing so” (p. 509). 

An alternative explanation that has been offered for the finding that sub- 
jects tend to stick to disconfirmed hypotheses is that they cannot think of 
alternative hypotheses. Einhorn and Hogarth (1986), suggest that: 

because the goal of causal inference is to find some explanation for the observed 
effects, the discounting of an explanation by specific alternatives still leaves 
one with the question, ‘If Xdid not cause Y, what did?‘. . . In fact, the distinc- 
tion between testing hypotheses and searching for better ones can be likened to 
the difference between a ‘disconfirmation’ versus ‘replacement’ mode of infer- 
ence. The replacement view is consistent with the Kuhnian notion that theories 
in science are not discarded, despite evidence to the contrary, if they are not 
replaced by better alternatives (Kuhn, 1962). Indeed, the replacement view is 
equally strong in everyday inference. (pp. 14-15) 

The results from our studies provide a basis for elaborating this view. We 
know that when subjects do have alternatives readily available-as in Study 
2-they are more likely to drop disconfirmed hypotheses than when they 
don’t-as in Study 1. On the other hand, when subjects could no longer 
think of any new hypotheses, they could decide to search the experiment 
space and not hold any hypotheses at all. Thus, subjects did not have to stick 
with their hypotheses once they had accumulated enough evidence to reject 
them, because it was permissible in our study to replace something with 
nothing. 

6.2.3. Abandoning Verified Hypotheses. The other side of perseveration 
in the face of disconfirmation is changing hypotheses in the face of confir- 
mation. Recall that, on average, subjects in Study 1 had one instance in 
which they changed an hypothesis even though the most recent experimen- 
tal outcome confirmed it. Strictly speaking, this is not a departure from 
logical norms, as positive experimental results can only provide what Klay- 
man and Ha (1987) call “ambiguous verification,” rather than “confirma- 
tion” as we have been calling it. Our interpretation of this behavior also 
invokes memory processes, but this time in a positive way. That is, subjects 
do have memory for previous outcomes, and the current result may not only 
confirm the current hypothesis, but, when added to the pool of previous 
results, may be consistent with some other hypothesis that appears more 
plausible or interesting. In order to fully account for this, SDDS would have 
to elaborate EVALUATE EVIDENCE so that it could look for global, as well as 
local, consistency in deciding what to do with the current hypothesis. 

6.3. Dual Search: The Source of-Different Strategies 
Strategic differences that have been observed in the prior work on concept 
formation bear certain similarities to the strategies that we have observed in 
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our studies. Bruner, et al. observed two basic strategies. The first is called 
focussing: Subjects focus on a positive instance and change the values of 
instances one attribute at a time until they discover the concept’s defining 
values. In terms of our model, Bruner’s focussers, by systematically attend- 
ing to the relevance of individual attributes, were cautiously searching the 
experiment space. Our Experimenters pursued a strategy similar to focussing. 
They searched the experiment-space, not with an hypothesis in mind, but 
only with an encoding of the last few instances of the device’s behavior. 
Their goal was to discover the attributes common to all the instances that 
they generated. 

The second strategy that Bruner et al. discovered was successive scanning; 
subjects test a single hypothesis at a time. Both our Experimenters and our 
Theorists used this strategy, though the difference between our two groups 
was that the Experimenters switched from testing hypotheses to collecting 
information that would allow them to generate a new hypothesis. Bruner et 
al. argued that subjects adopt one strategy rather than another because some 
strategies impose more of a cognitive strain, or short-term memory load, 
than others. However, in our task the source of difference between Experi- 
menters and Theorists is in long-term memory: Subjects who can construct 
the correct frame from information in long-term memory are Theorists. 
Those who are unable to construct the correct frame from information 
in long-term memory are Experimenters, and must search the experiment 
space. 

Our Experimenter/Theorist distinction is roughly analogous to the data- 
driven versus model-driven distinction in AI approaches to inductive infer- 
ence. However, for most Machine Learning models, both the amount and 
the accuracy of information required far excedes the capacity of our sub- 
jects. This fallibility may account for the kind of strategy differences-simi- 
lar to ours-that have been observed in other discovery tasks. For example, 
Rasmussen (1981) found two different types of strategies used by operators 
trying to find faults in a complex system. Some operators search the experi- 
ment space trying to find the faulty component. Other operators search a 
hypothesis space in order to think of a set of symptoms which are similar to 
the observed symptoms. Rasmussen also found that use of.these strategies 
vary with the amount of knowledge about the domain that the operators 
have: Experts tend to search the hypothesis space, and novices tend to search 
the experiment space. It is likely that in Rasmussen’s case, as in ours, the 
different strategies result from differences in prior knowledge rather than 
from a stable individual difference. 

6.4. Conclusion 
We have proposed that scientific reasoning requires search in two problem 
spaces and that the different strategies that we observed are caused by dif- 
ferent patterns of search in these two problem spaces. We proposed SDDS 
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as both a framework for interpreting these results and as a general model of 
scientific reasoning. Clearly, there are many aspects of the scientific reason- 
ing process that we need to specify further, but we believe that SDDS offers 
a potentially fruitful framework for discovering more about discovery. 

n Original Submission Date: February 17, 1987. 
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