Sentiment Classification using a SVM

Rahul Syamlal

Northwestern University Undergraduate
2047 Asbury Ave.
Evanston, IL 60201

r-syamlal@northwestern.edu

Jay Bruins

Northwestern University Undergraduate
2247 Sheridan Road
Evanston, IL 60201

j-bruins@northwestern.edu

1. ABSTRACT
With the growing popularity of user-submitted online content, a market for mining this information is emerging. One useful feature is categorical assignment, particularly sentiment classification.
Our work to apply support vector machines to sentiment classification of online reviews confirmed the observations of a number of prior papers. With minimal programming effort, we were able to obtain 86.72% accuracy with a linear SVM kernel when the user input was filtered for stop words and the documents were classified according to normalized feature presence information.
2. INTRODUCTION

The web is rife with user-submitted content. Internet users post their opinions, ideas, and comments on a multitude of forums, blogs, mailing lists and review sites. In order to search through this information, research on developing ways of classifying this data into categories is being conducted.
Most of this research is concerned with categorizing this information into themes - such as information about computers, cars, economics, TV shows, politics, or sports. However, several sites (like fark.com, epinions.com, and imdb.com) contain user-submitted information that expresses some sort of opinion about a certain topic such as a news article, product, or movie. These opinions or sentiments are the most important characteristics of this information; therefore, classifying this information with regard to its sentiment is more useful than classifying it with regard to its theme. This usefulness of sentiment classified information can be observed on review sites.
Review sites are helpful because of the fact that they present reviews of varying sentiment toward a particular product. These sites use objective measures such as a star-rating system coupled with subjective measures such as user opinions to help other users determine whether or not they should buy a particular product. In review systems where only subjective measures are provided, the task of classifying whether an opinion about a product is positive or negative is entirely up to the user. Automating such a process would greatly benefit both consumers and businesses alike: consumers could wade through the messages of a forum based on the type of opinions conveyed about a particular topic – for example, obtaining positive reviews about a video game or movie. Businesses could obtain more useful summaries of surveys about their products by classifying the sentiments of user comments.

In this paper, we explore the use of the machine learning technique of Support Vector Machines (SVM) in classifying the sentiment of movie reviews. SVMs have been found to work very well in this domain [1]. The most important aspect of sentiment classification in this domain is in feature selection or rather selecting the right words used in the classification process [1]. By using an appropriate feature extraction method, we intended to improve on previous SVM sentiment classification results.

3. RELATED WORKS

Our work is based primarily on the results of Pang et al. [1]. They used three types of machine learning techniques (Maximum entropy, Naïve Bayes, and SVM) to try and predict the sentiment of movie reviews. In fact, the same corpus of data used in this paper was compiled by Pang et al.[1]. The machine learning techniques outperformed human-generated baselines with the SVM having the highest degree of accuracy compared to the other techniques. It was also found that constructing document vectors with information about the mere presence of single words in a document produced better results than constructing the document vectors with information about the frequency of a word in the document. However, overall sentiment classification proved to be a more difficult problem in comparison to topical classification. In addition, it was found that the learners had the most trouble classifying reviews that contained sentences with contradictory sentiment (such as I hate Kevin Bacon, but this was a good movie). [1]
Other work in this field has concentrated more on feature extraction techniques. Work with unsupervised learners by Turney [2] produced fairly positive results (66% accurate) in the domain of movie reviews. His algorithm attempted to extract the semantic orientation of phrases within a given document and then sum the total differences between positively oriented and negatively oriented phrases to classify the overall sentiment of the document. This algorithm performed the worst in the domain of movie reviews compared to the other tested domains (automobile reviews, bank reviews, and travel destinations). Turney states that the reason for this is because movie reviews tend to have descriptions of the scenes in the movie which have semantic orientations opposite to that of the actual sentiment of the review (such as sick feeling in a positive review and blue skies in a negative review). [2]

Further work by Pang and Lee [3] produced a classification system that evaluates only the subjective portions of a movie review. Although the subjective portions extracted by the algorithm contained only 60% on average of a particular author’s original words, their classifier made a statistically significant improvement (82.8% to 86.4%) over using the entire text of each review. Subjectivity detectors were constructed using user movie reviews as subjective examples and IMDB plot summaries as objective data. The resulting subjective portions were analyzed by both a Naïve Bayes and a SVM using single words and presence information in constructing document vectors. The Naïve Bayes worked slightly better than the SVM, but the difference was negligible. [3]
A significant portion of sentiment classification work has dealt with single domain classification with a wealth of labeled data for training. Sood et. al., however, created a system that used case-based reasoning to perform cross-domain classification [4]. Instead of using probabilistic models, they utilized a statistical model of training data to create a sentiment query, which was considered to be a representation of the target document. These queries were then used to retrieve cases of labeled data from a case base. Although the system required labeled data, it didn’t rely on the presence of in-domain labeled training data. This system performed pretty well, obtaining a 73.79% average accuracy across multiple domains. In comparison, conventional systems tended to perform with 60 – 66 % average accuracy. However, their system was not able to perform better than the human baseline average accuracy of 78.60%. [4]

Our work concentrates on using SVMs to categorize reviews. In one of the earliest papers in the field of text categorization using SVMs, Joachims [5] found SVMs to perform very well at categorizing text compared to conventional learning algorithms for text categorization such as Naïve Bayes or decision trees. [5] also found that SVMs were more robust in terms of their performance over a variety of learning tasks compared to other learning methods. SVMs also are automatic and thus do not require as much parameter tweaking as the other methods.
4. METHOD

3.1 Dataset

The dataset (polarity dataset v2.0) we used in this paper is a publicly available corpus of IMDB movie reviews (http://reviews.imdb.com/Reviews/), found at:

http://www.cs.cornell.edu/people/pabo/movie-review-data/. This dataset was used in Pang et al. [3] to classify movie reviews as being positive or negative using a variety of machine learning techniques. The data set consists of 1000 positive and 1000 negative reviews in individual text files. The authors of the dataset made sure that only up to 20 reviews per single reviewer per classification were selected to prevent the dataset from over representing single prolific reviewers [3].

3.2 Feature Extraction

Prior to feeding our data into a SVM, we reduced the number of features (words) used in the classification process. Words common in the English language (the, that, as, an) and words that appeared infrequently in the data set were removed to reduce noise in the dataset. These stop words were taken from a list provided by the computer science department at the University of Glasgow [8]. As shown in [5] however, being too aggressive in tuning leads to loss of information and less accurate results.
2.1
3.3 Support Vector Machine
After processing each document and creating document vectors out of each one, we used a ten-fold cross-validation method in determining the overall accuracy of our support vector machine. The SVMlight package [6] was used in all of the support vector machine calculations with the default settings. Specifically, we used the Algorithm-SVMlight module from CPAN [7] as a wrapper to SVMlight. We used the linear kernel, which is the default.

3.4 Naïve Bayes
For comparison purposes, we also used Naïve Bayes provided by the Algorithm-NaiveBayes module from CPAN [9]. Naïve Bayes was chosen for a comparison because it is often used to classify text. This particular implementation was chosen for its API similarity to the SVM module.
3.5 Document Vector
We create a document vector from the features extracted from each document. The SVM module we used is flexible enough to manage categorical inputs for us. Each new word seen by the SVM module is internally assigned to a different coordinate in the vector. The value of each coordinate is zero when the word is absent from a document. The value when present depends on whether the document vector is normalized and whether the vector represents a frequency vector or a presence vector.
3.5.1 Frequency Vector

A document vector is a frequency document vector if the value of each coordinate is based on the frequency of a feature in the document. The more a feature appears in a document the larger its coordinate value.

3.5.2 Presence Vector

A document vector is a presence document vector if the value of each coordinate is based on whether a feature is present in the document. Any feature that occurs at least once receives the same value.
3.5.3 Normalization
Documents have varying lengths and thus their corresponding document vectors would have different lengths as well. When we normalize a vector, we scale it to unit length. This is intended to consider each document with even weight regardless of length.
5. EXPERIMENT
Our experiment analyses the performance of the default SVMlight implementation of a support vector machine on classifying user submitted movie reviews. We tested both Naïve Bayes and SVM with 4 variations on input parameters:
1) Normalized frequency vectors

2) Normalized presence vectors

3) Frequency vectors

4) Presence vectors.
For each run, we ran three 10-fold cross validation tests and averaged the results. We define accuracy as the number of correctly classified cases out of the total number of cases.
The results are given in Figure 1 and Table 1 below.

[image: image1.png]Accuracy (%)

50

88

86

84

82

80

78

76

74

72

Performance of Machine Learners

swm, swm, M, Nave Bayes, Naive Bayes, Naive Bayes, Naive Bayes,
nomulied, nomalied, freauency preserce nommaluec, nomalded, eaveney | presente
frequency presence frequency presence

Figure 1
	Learner
	Support Vector Machine
	Naïve Bayes

	Variation
	1
	2
	3
	4
	1
	2
	3
	4

	Mean
	84.57
	86.72
	83.55
	86.22
	81.58
	84.17
	81.35
	83.12

	StdDev
	2.65
	2.28
	2.78
	2.53
	3.18
	2.76
	2.76
	3.39

Table 1
As shown in Figure 1 and Table 1, our best result, 86.72% accuracy, was obtained with the SVM and normalized presence vectors.

6. CONCLUSION

Previous work [5] indicated that support vector machines performed better that other machine learners on text classification. Additionally, presence information was found to be more accurate than frequency [3]. Normalized vectors also improved performance [1].

Our experiment confirmed all of these prior results. With minimal programming effort, we were able to obtain 86.72% accuracy with a linear SVM kernel when the input was normalized document presence vectors.

We expect that in the future we could obtain even better results by moving away from a linear kernel.
7. References

[1] Pang, B., Lee, L., and Vaithyanathan, S. Thumbs up? Sentiment Classification using Machine Learning Techniques Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) 2002, p. 79-86

[2] Peter Turney. 2002. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In Proc. of the ACL.

[3] Pang, B., and Lee, L. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts Proceedings of the ACL, 2004.

[4] Sood, S., Owsley, S., Hammond, K., and Birnbaum, L.. Reasoning through search: A novel approach to sentiment classification. In submitted to EMNLP, July 2006.
[5] Thorsten Joachims. 1998. Text categorization with support vector machines: Learning with many relevant features. In Proc. of the European Conference on Machine Learning (ECML), pages 137–142.

[6] T. Joachims, Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, B. Schölkopf and C. Burges and A. Smola (ed.), MIT-Press, 1999.

[7] Williams, K. Algorithm-SVMLight. http://search.cpan.org/~kwilliams/Algorithm-SVMLight/lib/Algorithm/SVMLight.pm
[8] Sanderson, M. IR Linguistic Utilities – Stop Words. http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
[9] Williams, K. Algorithm-NaiveBayes. http://search.cpan.org/~kwilliams/Algorithm-NaiveBayes/lib/Algorithm/NaiveBayes.pm

PAGE

