Naïve Bayes Classifiers

- Combines all ideas we’ve covered
 - Conditional Independence
 - Bayes’ Rule
 - Statistical Estimation
 - Bayes Nets

...in a simple, yet accurate classifier

- Classifier: Function \(f(x) \) from \(X = \{x_1, \ldots, x_d\} \) to Class
- E.g., \(X = \{\text{<GRE, GPA, Letters}>\} \), \(Class = \{\text{yes, no, wait}\} \)
Classification task
- Learn function $f(x)$ from $X = \{x_1, \ldots, x_d\}$ to Class
- Given: Examples $D=\{(x, y)\}$

Probabilistic Approach
- Learn $P(Class = y \mid X = x)$ from D
- Given x, pick the maximally probable y
More formally

\[f(x) = \arg \max_y P(Class = y \mid X = x, \theta_{\text{MAP}}) \]

\[\theta_{\text{MAP}} : \text{MAP parameters, learned from data} \]

That is, parameters of \(P(Class = y \mid X = x) \)

…we’ll focus on using MAP estimate, but can also use ML or Bayesian

Predict next coin flip? Instance of this problem

\[X = \text{null} \]

Given \(D = \text{hhht…ttht} \), estimate \(P(\theta \mid D) \), find MAP

Predict \(Class = \text{heads} \) iff \(\theta_{\text{MAP}} > \frac{1}{2} \)
Dear Sir/Madam,
We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)
Representation

- \(X = \) document
- Task: Estimate \(P(\text{Class} = \{\text{spam, non-spam}\} \mid X) \)
- Question: how to represent \(X \)?
- Lots of possibilities, common choice: “bag of words”

Dear Sir/Madam,
We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)

\[
\begin{array}{c|c}
\text{Sir} & 1 \\
\text{Lottery} & 10 \\
\text{Dollars} & 7 \\
\text{With} & 38 \\
\ldots & \\
\end{array}
\]
Bag of Words

- Ignores Word Order, i.e.
 - No emphasis on title
 - No compositional meaning ("Cold War" -> "cold" and "war")
 - Etc.
- But, massively reduces dimensionality/complexity

- Still and all...
 - Presence or absence of a 100,000-word vocab => $2^{100,000}$ distinct vectors
Naïve Bayes Classifiers

- $P(\text{Class} \mid \mathbf{X})$ for $|\text{Val}(\mathbf{X})| = 2^{100,000}$ requires $2^{100,000}$ parameters

 - Problematic.

- Bayes’ Rule:
 \[
 P(\text{Class} \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid \text{Class}) \cdot P(\text{Class})}{P(\mathbf{X})}
 \]

- Assume presence of word i is independent of all other words given Class:
 \[
 P(\text{Class} \mid \mathbf{X}) = \frac{\prod_i P(X_i \mid \text{Class}) \cdot P(\text{Class})}{P(\mathbf{X})}
 \]

- Now only 200,001 parameters for $P(\text{Class} \mid \mathbf{X})$
Naïve Bayes Assumption

- Features are conditionally independent given class
 - $\text{Not } P(\text{"Republican", "Democrat"}) = P(\text{"Republican"})P(\text{"Democrat"})$
 - but instead
 $P(\text{"Republican", "Democrat"} | \text{Class} = \text{Politics}) =$
 $P(\text{"Republican"} | \text{Class} = \text{Politics})P(\text{"Democrat"} | \text{Class} = \text{Politics})$

- Still, an absurd assumption
 - ("Lottery" \perp "Winner" | SPAM)? ("lunch" \perp "noon" | Not SPAM)?

- But: offers massive tractability advantages and works quite well in practice
 - Lesson: Unrealistically strong independence assumptions sometimes allow you to build an accurate model where you otherwise couldn’t
Getting the parameters from data

- Parameters $\theta = < \theta_{ij} = P(w_i | Class = j) >$
- Maximum Likelihood: Estimate $P(w_i | Class = j)$ from D by counting
 - Fraction of documents in class j containing word i
 - But if word i never occurs in class j?
- Commonly used MAP estimate:
 - \[
 \frac{(# \text{ docs in class } j \text{ with word } i) + 1}{(# \text{ docs in class } j) + |V|}
 \]
Caveats

- Naïve Bayes effective as a classifier

- **Not** as effective in producing probability estimates
 - $\prod_i P(w_i \mid \text{Class})$ pushes estimates toward 0 or 1

- In practice, numerical underflow is typical at classification time
 - Compare sum of logs instead of product